
박사학위논문
Ph.D. Dissertation

동적장애물로부터의안전한사용자명령

수행을위한로봇팔움직임계획

Robot Arm Motion Planning for Safe Execution of
User Commands against Dynamic Obstacles

2023

강민철 (姜旻澈 Kang, Mincheul)

한국과학기술원

Korea Advanced Institute of Science and Technology

박사학위논문

동적장애물로부터의안전한사용자명령

수행을위한로봇팔움직임계획

2023

강민철

한국과학기술원

전산학부

동적장애물로부터의안전한사용자명령

수행을위한로봇팔움직임계획

강민철

위논문은한국과학기술원박사학위논문으로

학위논문심사위원회의심사를통과하였음

2022년 11월 23일

심사위원장 윤성의 (인)

심사위원 조성호 (인)

심사위원 명현 (인)

심사위원 김영준 (인)

심사위원 박대형 (인)

Robot Arm Motion Planning for Safe Execution of
User Commands against Dynamic Obstacles

Mincheul Kang

Advisor: Sung-Eui Yoon

A dissertation submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea
November 23, 2022

Approved by

Sung-Eui Yoon
Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and Technology, hereby

declare that I have not committed any act that may damage the credibility of my research. This includes, but is not limited to, falsification,

thesis written by someone else, distortion of research findings, and plagiarism. I confirm that my thesis contains honest conclusions based on

my own careful research under the guidance of my advisor.

DCS 강민철. 동적 장애물로부터의 안전한 사용자 명령

수행을 위한 로봇 팔 움직임 계획. 전산학부. 2023년. 57+iv 쪽. 지도교수:

윤성의. (영문 논문)

Mincheul Kang. Robot Arm Motion Planning for Safe Execution of

User Commands against Dynamic Obstacles. School of Computing. 2023.

57+iv pages. Advisor: Sung-Eui Yoon. (Text in English)

초록

원격 조작은 사용자의 명령에 의해 로봇을 조종하는 것으로, 핵 발전소나 의료 시설과 같은 특수한 장소에서

사람이하기에위험하거나어려운일을대신하는데많이사용되어왔다. 최근에는집과편의점같은우리주변

환경으로영역을확장해직접그장소에가지않고로봇을통해일을수행하기위한연구들이진행되고있다.

우리주변환경은다양하고동적인장애물들이많기때문에,이런장애물들로부터안전한사용자명령수행이

필요하다. 장애물회피에는많은계산량이소요되는반면,사용자는명령에즉각적인수행을바란다. 그렇기에

장애물회피의계산량을줄이면서도사용자의명령을따르는조인트구성을찾는것이중요한문제이다.

본논문에서는다양하고동적인장애물로부터안전한사용자명령수행을위한로봇팔움직임계획법을

제안한다. 또한, 본 논문은 로봇의 엔드-이펙터에 주어지는 사용자의 명령에 대해 다양한 조인트 구성들을

가지는 여유 자유도 로봇을 대상으로 한다. 그에 따라, 본 논문은 사용자 명령에 대한 다양한 조인트 구성 중

충돌 없는 조인트 구성을 찾는 것과 사용자의 부주의로 인한 위험한 명령을 안전하게 조정하는 것을 다룬다.

구체적으로, 1)장애물을피해주어진엔드-이팩터경로를따라가는조인트경로를생성하기위한경로최적화

방법을 제안한다. 다음으로, 2) 동적 장애물이 있는 환경에서 실시간으로 주어지는 사용자 명령을 수행하기

위한딥러닝기반의실시간역기구학기법을제안한다. 마지막으로, 3)사용자의부주의로인한위험한명령을

안전하도록 조정하기 위한 강화학습 기반의 사용자 명령 조정법을 제안한다. 제안한 방법은 실제 센서 데

이터와 로봇을 이용해서 실험하였고, 다양하고 동적인 장애물들로부터 사용자 명령 수행의 안전성을 높임을

보였다.

핵심낱말 움직임계획,충돌회피,역기구학,여유자유도로봇,원격조작

Abstract
Remote manipulation is to control a robot from a user command and has been primarily used to perform dangerous

or difficult tasks for humans in special places such as nuclear power plants or medical facilities. Recently, the scope

of remote manipulation has expanded to environments around us (e.g., homes and convenience stores), and studies

have been conducted to perform tasks through robots without directly going to those places. Since environments

around us have many different and dynamic obstacles, it is necessary to perform user commands safely from these

obstacles. Obstacle avoidance requires high computational costs, whereas users expect immediate execution of

commands. Therefore, it is an important issue to find collision-free joint configurations that follow user commands

while reducing the amount of computation for obstacle avoidance.

In this dissertation, we present robot arm motion planning approaches for safe execution of user commands

against various and dynamic obstacles. This dissertation also targets a redundant manipulator, which has various

joint configurations for a user command given to the manipulator’s end-effector. Accordingly, this dissertation

deals with finding a collision-free joint configuration among various solutions for a user command and adjusting a

risky command due to the user’s unpredictability or carelessness to be safe. Specifically, we propose 1) a trajectory

optimization method for generating joint configurations that follow a given end-effector path avoiding obstacles.

We also propose 2) real-time collision-free inverse kinematics based on deep learning to perform consecutive

user’s real-time commands in dynamic environments. Lastly, we propose 3) a reinforcement learning-based user

command adjustment method to adjust risky commands caused by the user’s carelessness to be safe. We showed

that our proposed methods increase safety from various and dynamic obstacles through experiments using the real

robot and sensor data.

Keywords Motion Planning, Collision Avoidance, Inverse Kinematics, Redundant Manipulator, Remote Manip-

ulation

Contents

Contents . i

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

1.1 List of Related Papers . 3

Chapter 2. TORM: Fast and Accurate Trajectory Optimization of Redundant

Manipulator given an End-Effector Path 4

2.1 Introduction . 4

2.2 Related Work . 5

2.2.1 Inverse Kinematics . 5

2.2.2 Motion Planning for Following an End-effector Path 6

2.2.3 Constrained Motion Planning . 7

2.2.4 Gradient descent for a constrained problem 7

2.2.5 Avoiding local minima for trajectory optimization 7

2.3 Background . 7

2.3.1 Problem Definition . 8

2.3.2 Jacobian-based Inverse Kinematics 8

2.3.3 Optimization-based Motion Planning 9

2.4 Trajectory Optimization . 10

2.4.1 Motivation and Overview . 10

2.4.2 Two-Stage Gradient Descent . 11

2.4.3 Adaptive Exploration . 13

2.4.4 New Trajectory Generation . 14

2.4.5 Trajectory Constraints . 15

2.5 Experiments and Analysis . 16

2.5.1 Experiment setting . 16

2.5.2 Comparison with prior methods . 18

2.5.3 Analysis of our proposed methods 21

2.5.4 Analysis with different robots . 23

Chapter 3. RCIK: Real-Time Collision-Free Inverse Kinematics using a Collision-

Cost Prediction Network 24

3.1 Introduction . 24

i

3.2 Related Work . 24

3.2.1 Inverse Kinematics . 25

3.2.2 Collision Avoidance for Manipulation Planning 26

3.3 Overview . 26

3.3.1 Problem Definition . 26

3.3.2 Motivation . 27

3.4 Real-time Collision-free Inverse Kinematics 28

3.4.1 IK candidates . 28

3.4.2 Objective Function . 29

3.4.3 Collision-Cost Prediction Network 30

3.5 Experiments And Analysis . 32

3.5.1 Experiments in dynamic environments 33

3.5.2 Analysis . 34

Chapter 4. Towards Safe Remote Manipulation: User Command Adjustment

based on Risk Prediction for Dynamic Obstacles 37

4.1 Introduction . 37

4.2 Related Work . 38

4.2.1 Inverse kinematics for remote manipulation 38

4.2.2 Dynamic obstacle avoidance . 39

4.3 Background . 39

4.3.1 Problem definition . 39

4.3.2 Reinforcement Learning . 40

4.4 Approach . 40

4.4.1 Overview . 40

4.4.2 User command adjustment . 41

4.4.3 Risk prediction for dynamic obstacles 42

4.4.4 Training details . 43

4.5 Experiments . 44

4.5.1 Evaluation . 44

4.5.2 Real robot test . 46

Chapter 5. Conclusion 48

Bibliography 49

Acknowledgments in Korean 56

Curriculum Vitae in Korean 57

ii

List of Tables

2.1 Notation table . 9

2.2 Results of different methods, CHOMP, Trajopt, EIGS, and ours in four problems including ex-

ternal obstacles. The bold text indicates the smallest pose error, and the underline indicates the

second smallest pose error. 17

2.3 Results of different methods, CHOMP, Trajopt, EIGS, RelaxedIK, Stampede, and ours in two non-

obstacle problems. RelaxedIk is a real-time planner and does not provide better trajectories with

more planning time; we provide its results while it cannot be compared in the equal-time compari-

son. RelaxedIK and Stampede experimented with non-obstacle problems since these methods only

check self-collision. The bold text indicates the smallest pose error, and the underline indicates

the second smallest pose error. 18

2.4 Results of the number of iterations and explorations during 50 seconds for optimization-based

approaches, CHOMP, Trajopt, and ours. Parenthesis indicates the time (s) for one update of its

optimizer. We regard one update of Trajopt as one execution of the quadratic solver. 20

2.5 Analysis of components of our proposed method by substituting them to alternative methods, the

simple integration (SI), iterative exploration (IE), and extracting sub-sampled poses at 10 and 50

intervals. The last row shows the results of our complete method. 20

3.1 Construction times of the SDF with varying resolutions and computation time of collision costs

for 50 IK candidates using the SDF and the CCPN. 33

3.2 Results with 20 experiments with different methods in dynamic environments. 34

3.3 Results of using the SDF with varying resolutions and the CCPN trained by varying wrank in the

validation dataset. The number of unique data indicates the number of different collision costs

among 50 IK candidates. 35

3.4 Results of different methods with varying configurations of robots in static environments. Re-

laxedIK only considers self-collision, and thus is tested in two non-obstacle scenes. 35

4.1 Results in two kinds of obstacle environments: both static and dynamic obstacles, and only static

obstacles. 44

4.2 The mean and standard deviation of difference between ρ computed from Eq. 4.6 and ρ̂ predicted

by the RPN. 46

iii

List of Figures

1.1 These figures show (a) our desired output and the test results when there is no consideration of

(b) obstacle avoidance and (c) joint velocity limit between commands; the joint velocity limit is to

maintain continuity between commands. The red and blue lines indicate the given commands and

computed end-effector movements, respectively. 2

1.2 This figure shows the end-effector pose for a user command and its IK solutions for the redundant

manipulator, seven-DoF Fetch manipulator. The manipulator has infinity joint configurations for

one end-effector pose; we visualize 100 joint configurations. To avoid obstacles, the robot links

associated with the end-effector (red circle) depend on the user command. The other links (blue

circle) are determined by considering obstacles under various possibilities. 2

1.3 These figures outline our proposed methods for the safe execution of user commands. 3

2.1 These figures show a sequence of maneuvering the Fetch manipulator to follow the specified end-

effector path (red lines). Our method generates the trajectory that accurately follows the given

end-effector path, while avoiding obstacles such as the pack of A4 paper and the table. 5

2.2 This figure shows our problem that is synthesizing a feasible and accurate trajectory ξξξ for a

given end-effector path X . The red line is X , which is approximated by end-effector poses

X̃ = {xxx0,xxx1, ...,xxxn} (green dots). The trajectory ξξξ is computed at end-effector poses X̃ . The part

of the synthesized trajectory shows that the end-effector follows the red line, and the sequence of

joint configurations is smooth and collision-free, while avoiding obstacles such as the blue box

and the table. 8

2.3 This figure shows an abstraction of our overall algorithm. The blue boxes represent the itera-

tive process, and one exploration means the refinement process starting from a newly generated

trajectory. 10

2.4 This shows the illustration of optimization progress for a simple integration using Eq. 2.7, and

our TSGD (Eq. 2.9). Each gray contour line represents equal Fpose, and the center, marked ⊗,

of innermost contour has the smallest Fpose. The simple integration (a) is difficult to reach the

minimum Fpose due to conflicts between three different terms; black arrows represent the update

process of the simple integration through the sum of three functional gradients. On the other hand,

our TSGD approaches to the minimum Fpose through alternatively updating the trajectory toward

the feasible set C shown in the red region using ∇Fobs and ∇Fsmooth (green arrow) and updating

the trajectory toward the minimum Fpose using ∇Fpose (blue arrow). 11

2.5 This illustrates two problematic cases for ineffective exploration; the information of this figure

can be seen in Figure 2.4. Note that these figures are examples of one exploration from a newly

generated trajectory, ξ0. (a) is the case where Fpose gradually increases due to the strong tendency

to make a feasible trajectory. In contrast, (b) is the case where Fpose is gradually reduced, but it is

still not feasible. 12

iv

2.6 This figure shows sub-sampled poses S (blue dots), extracted from finely divided end-effector

poses X̃ (red dots), in the problem of square tracing and writing “hello”. From S, we construct a

new trajectory ξnew that starts with random IK solutions and is found in a greedy manner minimiz-

ing Eq. 2.7. (a,d) and (b,e) are extracted uniformly at 10 and 50, respectively. (c) and (f) are

the results computed by the path simplification using the DP algorithm. () represents the number

of extracted sub-sampled poses as blue dots. (b) has too many S, increasing the time to generate a

new trajectory ξξξ new. On the other hand, (d) has a small number of S, which is not enough to make

an potentially good trajectory. On the other hand, we apply the path simplification to extract the

appropriate S (c, f) regardless of various forms of paths. 14

2.7 This shows six problems with three different robots, Kuka 7-DoF, Fetch 7-DoF, and Hubo 8-DoF.

Four problems, (a) to (d), include external obstacles and two problems, (e) and (f), do not have

external obstacles. The red line represents the given end-effector path. 16

2.8 This shows the pose error over the planning time of different methods in three different problems.

Since (a) and (c) include external obstacles, RelaxedIK and Stampede are excluded from the

experiments. Also, the start configurations of (a) and (c) are fixed. We visualize graphs once an

initial solution is computed. 19

2.9 This shows the pose error as a function of the planning time of various ablated methods. Our com-

plete method contains two-stage gradient descent (TSGD), adaptive exploration (AE), and path

simplification (PS). We substitute them with the simple integration (SI), the iterative exploration

(IE) with the fixed number of iterations, and extracting sub-sampled poses at 10 and 50 intervals.

The gray dotted lines represent the results shown in Table 2.5. 21

2.10 This shows the pose error over the planning time of different methods with three different robots

in “S” tracing with two boxes. 22

3.1 These figures show the progress of our method in a dynamic environment. (a) Our method per-

forms consecutively given 6-DoF commands while avoiding a dynamic obstacle, a cart in this

case. (b) To avoid the cart, we compute a collision cost, Fcol , using our collision-cost predic-

tion network (CCPN). The CCPN uses an occupancy grid updated through sensor data to reflect

changing environments immediately. Finally, our method finds a desired joint configuration that

allows the robot to follow the given command accurately while avoiding obstacles. Our algorithm

conducts all of these operations within 30ms for each command, mainly due to CCPN. 25

3.2 This shows an overview of our approach. (a) Our method synthesizes a desired joint configuration

qdes that matches the target end-effector pose xtar as a 6-DoF command and has the motion feasi-

bility considering the current configuration qcur. (b) First, we generate IK candidates Qcand with

high feasibility based on an optimization-based IK approach. (c) With checking constraints, such

as collision and joint velocity limits, for Qcand , we select the best one using our objective function

for collision avoidance with obstacles and smoothness with previous joint configurations. (d) For

6-DoF commands given consecutively, denoted with the yellow arrow, our method sequentially

synthesizes joint configurations that accurately realize the commands while avoiding collision and

achieving smoothness, as indicated by the red arrow. 26

3.3 These figures show (a) the simplified robot links, spheres B, used for manipulation and (b) signed

distance field for external obstacles, the table and gray box. The color of cells represents the

distance from the closest obstacles; as the distance from a cell to the obstacle becomes smaller, its

color gets closer to the red, and vice-versa to blue. 29

v

3.4 This figure shows the collision-cost prediction network (CCPN), which consists of two feature

extractors and one regression module. 30

3.5 These figures show one of the generated environments to obtain training data. From (a) randomly

distributed obstacles, we construct (b) an occupancy grid with updates from sensor data. 31

3.6 These figures show our experiment in the dynamic environments using a real robot, the Fetch

manipulator. The robot receives 6-DoF commands consecutively to trace (a) circle and (b) square,

while avoiding an incoming book in the direction of the green arrow. Additionally, (b) includes

a static obstacle, a table. Note that we give 6-DoF commands consecutively to follow the yellow

line. 32

4.1 This shows the visualization of the user monitor screen for remote manipulation. In the visualized

situation, the user gives commands (red arrow) to the robot to move a water bottle (orange boxes)

from the dotted magenta box to the direction of the magenta arrow, and a person suddenly appears

in the camera’s field of view (blue arrow). Our method predicts high risk of collision, which

is expressed between 0 and 1, and for safe remote manipulation, it adjusts the user’s command

accordingly to move the robot away from the obstacle (green arrow). The cells of the occupancy

grid are colored according to the z-axis value. 38

4.2 This shows the overall system flow of our approach. 40

4.3 This shows the structure of obstacle avoidance command network (OACN). The encoder is a 3-D

convolutional network following the obstacle feature extractor of RCIK [1]. 41

4.4 This shows our risk prediction network (RPN) for dynamic obstacles. The RPN recurrently takes

joint positions xpos
q and an occupancy grid difference ∆O. We apply VoxNet [2] to extract the fea-

ture of an occupancy grid difference ∆O. Furthermore, we utilize the gate recurrent unit (GRU) [3]

to preserve previous robot state and obstacle information. 42

4.5 (a) shows an example of a randomly generated obstacle environment. Gray boxes are static obsta-

cles, and the orange box is a dynamic obstacle. The green arrow indicates the moving direction

of the dynamic obstacle. (b) shows the occupancy grid difference ∆O between Ot and Ot−1 con-

structed from sensor data for (a). Each cell in O is represented as 1 if there is an obstacle or 0

otherwise. Therefore, in the occupancy grid difference, 1 (blue boxes) and −1 (red boxes) indi-

cates newly detected and disappeared obstacles, respectively. From the occupancy grid difference,

we can see the moving direction of the dynamic obstacle, but the noise data due to sensor noise

occurs near static obstacles (dotted black circles). 43

4.6 These figures show examples of our results in (a) an environment with static and dynamic obstacles

and (b) an environment with only static obstacles. Orange and gray boxes are dynamic and static

obstacles, respectively, and red and green arrows indicate the magnitude and direction of given

command and adjusted command, respectively. The numbers in the upper right of figures are

predicted risks for dynamic obstacles ρ̂s. (a) shows that as the dynamic obstacle approaches to the

manipulator, our method predicts a high ρ̂ and adjusts the given command to avoid the obstacle.

In contrast, as the dynamic obstacle moves away from the manipulator, our method follows the

given commands, predicting a low ρ̂ . (b) shows that our method robustly copes with the noisy

sensor data by predicting a near-zero ρ̂ in a static environment. 45

vi

4.7 These figures show tested problems in a real environment. Red arrow and blue arrow indicate the

moving direction of the user commands and a person, respectively. In both problems, there is a

risk of collision since the moving direction of the user commands and the person intersect. (a) is

that the user gives commands to the robot to pick the black water bottle (red dotted box) and the

person moves to pick the green water bottle (blue dotted box). (b) is that the user gives commands

to the robot to transfer the water bottle and the person suddenly appears from behind the robot. . 46

vii

Chapter 1. Introduction

Remote manipulation is controlling a robot from a user’s command at a distance. It has been primarily used

to perform tasks on behalf of humans at special-purpose sites. For example, surgical robots perform sophisticated

operations that could be difficult for humans [4], and remote robots in hazardous places, such as nuclear power

plants [5], reduce the risk of human beings by putting them in place of humans. Recently, the scope of remote

manipulation has been expanded to environments around us, such as convenience stores (e.g., Telexistence1) and

homes [6–9]. In environments around us, there are various obstacles, both static and dynamic, and avoiding such

obstacles is necessary for the safe execution of user commands.

In this dissertation, a user gives a command to the robot arm’s end-effector in the Cartesian space, and

our target robot is a redundant manipulator, which has multiple joint configurations for one end-effector pose;

the redundant manipulator has a controllable degree-of-freedom (DoF) greater than six, which is the DoF of the

Cartesian space. Generally, inverse kinematics (IK) methods find a joint configuration from the command in the

Cartesian space. However, basic inverse kinematic methods (e.g., KDL2, IKfast [10], and Trac-IK [11]) do not take

into account several constraints to follow user commands, such as collision with obstacles, joint velocity limits

between commands, and kinematic singularity (Figure 1.1) [12]. Several works [12–15] point out the necessity

of these constraints and consider the constraints to follow user commands. On the other hand, various issues

still remain, such as accuracy, computation time, applicability to real robots, and consideration of dynamic and

external obstacles.

A user anticipates that a robot will respond to commands immediately, whereas avoiding various and dynamic

obstacles require high computational costs. This is because collision detection and distance computation between

robot links and obstacles must be repeatedly performed in order to avoid the obstacles. Furthermore, it is difficult

to handle dynamic obstacles due to their uncertain and sudden movement. Therefore, this dissertation focus on

reducing the computational overhead of collision avoidance and handling dynamic obstacles.

To overcome the challenges mentioned earlier, we present robot arm motion planning approaches for the

safe execution of user commands in environments surrounding various and dynamic obstacles. Considering the

characteristic of following a user command, we divide the robot arm into two parts. One is that the robot links

associated with the end-effector (red circle in the Figure 1.2) depend on the user command. Other robot links

(blue circle in the Figure 1.2) have various possibilities for the user command since our target robot is a redundant

manipulator. Therefore, we deal with finding collision-free joint configurations from user commands and adjusting

a risky command caused by the user’s mistake or unfamiliar control skills to be safe. Also, this dissertation aims

to apply our proposed methods in a real environment. To do that, the proposed methods use a sensor data and

handle its noise, which is the difficulty of a real environment. In addition, this dissertation introduces the existing

methods and discusses improvements of our proposed methods.

We first solve a problem to follow a given end-effector path while avoiding obstacles. Prior works [13,14] to

follow the path suggest sampling-based IK methods (Figure 1.3a). These methods can achieve a global optimal

trajectory, but requires excessive computation to cover multiple solutions for a redundant manipulator. To effi-

ciently search a solution space, optimization-based motion planning approaches [16, 17] synthesize a trajectory

that follows the given path by adding the task constraint to their optimizer. However, these planners have difficul-

ties dealing with diverse constraints and complex paths since they tend to fall into a local minimum. In Chapter 2,

1https://tx-inc.com
2http://wiki.ros.org/kdl

1

https://tx-inc.com
http://wiki.ros.org/kdl

(a) Desired output

Collision

(b) No considering obstacle avoidance

Inaccurate command execution

(c) No considering joint velocity limits

between commands

Figure 1.1: These figures show (a) our desired output and the test results when there is no consideration of (b)

obstacle avoidance and (c) joint velocity limit between commands; the joint velocity limit is to maintain continuity

between commands. The red and blue lines indicate the given commands and computed end-effector movements,

respectively.

Obstacle

Many candidates

End-effector pose
for a user command

Dependence on
a user command

Figure 1.2: This figure shows the end-effector pose for a user command and its IK solutions for the redundant

manipulator, seven-DoF Fetch manipulator. The manipulator has infinity joint configurations for one end-effector

pose; we visualize 100 joint configurations. To avoid obstacles, the robot links associated with the end-effector

(red circle) depend on the user command. The other links (blue circle) are determined by considering obstacles

under various possibilities.

we present a trajectory optimization of a redundant manipulator (TORM) for synthesizing a trajectory that is ac-

curately following a given path while satisfying several constraints, joint position and velocity limits, kinematic

singularity, and collisions with obstacles. Our method integrates the Jacobian-based IK solving method and an

optimization-based motion planning approach to holistically incorporate these constraints into our optimization

process.

Next, we solve a problem of calculating solutions in real-time for consecutively given user commands (Fig-

ure 1.3b). As prior methods, RelaxedIK [12] and CollisionIK [15] suggest a non-linear optimization methods to

solve the problem in real-time. On the other hand, these approaches do not take into account difficulties of a real

environment, such as dynamic obstacles or sensor noise. In Chapter 3, we present real-time collision-free inverse

kinematics (RCIK) to handle dynamic obstacles in real-time. Our method reduces the massive computational

overhead associated with collision using a neural network. Our network estimates a collision cost by grasping

environment information from an occupancy grid updated from sensor data in real-time.

2

Obstacles

(a) Trajectory optimization for an end-

effector path

Dynamic
obstacle

(b) Real-time collision-free inverse kine-

matic

(c) Risk-aware user command adjust-

ment

Figure 1.3: These figures outline our proposed methods for the safe execution of user commands.

Lastly, we solve a problem of adjusting a risky user commands to be safe unlike the previous two methods

dealing with executable user commands (Figure 1.3c). Real-time IK solvers [1, 15] have the characteristic of fol-

lowing a user’s command, whereas a user can make risky commands due to unexpected situations or insufficient

control skill. In the case of static obstacles, we can keep the safety by naı̈vely stopping a robot, even if the user’s

command has a possibility of causing a collision. On the other hand, it is difficult to guarantee the safety against

dynamic obstacles with uncertain motions [18, 19]. In Chapter 4, we present a risk-aware user command adjust-

ment method that predicts the risk of dynamic obstacles and then adjusts a user command based on the predicted

risk. Also, we handle sensor noises using a deep neural network to apply our method in a real environment.

1.1 List of Related Papers

This dissertation is partially related to the following published papers:

• Mincheul Kang and Sung-Eui Yoon, Analysis and Acceleration of TORM: Optimization-based Planning

for Path-wise Inverse Kinematics, Autonomous Robots, vol. 46, pp. 599-615, 2022.

• Mincheul Kang, Yoonki Cho, and Sung-Eui Yoon, RCIK: Real-Time Collision-Free Inverse Kinematics

Using a Collision-Cost Prediction Network, IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1,

pp. 610-617, 2021.

• Mincheul Kang, Heechan Shin, Donghyuk Kim, and Sung-Eui Yoon, TORM: Fast and Accurate Trajectory

Optimization of Redundant Manipulator given an End-Effector Path, IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2020.

3

Chapter 2. TORM: Fast and Accurate Trajectory Optimization of
Redundant Manipulator given an End-Effector Path

2.1 Introduction

Remote control of various robots has been one of the main challenges in robotics, while it is commonly

used for cases where it is difficult or dangerous for a human to perform tasks [20, 21]. In this remote control

scenario, a robot has to follow the task command accurately while considering its surrounding environment and

the constraints of the robot itself.

In the case of a redundant manipulator that this chapter focuses on, a sequence of finely-specified joint

configurations is required to follow the end-effector path in the Cartesian space accurately. Traditionally, inverse

kinematics (IK) has been used to determine joint configurations given an end-effector pose. The traditional IK,

however, cannot consider the continuity of configurations, collision avoidance, and kinematic singularities that

arise when considering to follow the end-effector path.

Path-wise IK approaches [12,13] solve this problem using non-linear optimization by considering aforemen-

tioned constraints (Sec. 2.2.1). These approaches avoid self-collisions using a neural network, but they do not

deal with collisions for external obstacles. On the other hand, prior methods [14, 22] based on a motion planning

approach consider external obstacles and use IK solutions to synthesize a trajectory following the desired path in

the Cartesian space. By simply using IK solutions, however, these methods have time or structural difficulties in

getting a highly-accurate solution (Sec. 2.2.2).

Optimization-based motion planners [16, 17] can make a trajectory that follows the given path by adding the

kinematic constraints to their optimizer. However, these planners have difficulty dealing with diverse constraints

and complex paths since it tends to fall into a local minimum (Sec. 2.2.3). Our method is also an optimization-

based approach, but we alleviate this problem by performing an appropriate update method for a path-wise IK

problem and exploring various trajectories efficiently.

In this work, we present a trajectory optimization of a redundant manipulator (TORM) for synthesizing a

trajectory that is accurately following a given path as well as smooth and collision-free against the robot itself

and external obstacles (Figure 2.1). Our method incorporates these properties into the optimization process by

holistically integrating the Jacobian-based IK solving method and an optimization-based motion planning ap-

proach. For effective optimization, we consider different properties of our objectives through a two-stage update

manner, which alternates making a constraint-satisfying trajectory and following a given end-effector path accu-

rately (Sec. 2.4.2). To avoid local minima within our optimization process, we iteratively perform exploration for

other alternative trajectories. We also accelerate the iterative exploration by adaptively deciding the stop of each

exploration based on the observation of optimization results (Sec. 2.4.3). In addition, in order to strike a good

balance between the quality and generation time of trajectory for the exploration, we apply a path simplification

to extract sub-sampled poses with appropriate intervals and generate the trajectory using the random IK solution

at the extracted poses (Sec. 2.4.4).

To compare our method with the prior methods, CHOMP [16], Trajopt [17], RelaxedIK [12], Stampede [13]

and the work of Holladay et al. [14], we test four scenes with external obstacles and two non-obstacle prob-

lems. Furthermore, we test three different configurations of robots, Kuka 7-DoF, Fetch 7-DoF, and Hubo 8-DoF

(Sec. 2.5.1).

Overall, we observe that our method achieves more accurate solutions given the equal planning time over

4

1 2 3

6 5 4

Figure 2.1: These figures show a sequence of maneuvering the Fetch manipulator to follow the specified end-

effector path (red lines). Our method generates the trajectory that accurately follows the given end-effector path,

while avoiding obstacles such as the pack of A4 paper and the table.

the tested prior methods. Also, our method robustly minimizes the pose error reasonably fast with the anytime

property, which quickly finds an initial trajectory and refines the trajectory [23] (Sec. 2.5.2). This result mainly

arises from the holistic optimization process. To show the benefits of our proposed methods, we test by replacing

some of our methods with other methods (Sec. 2.5.3) and analyze the results of three different configurations of

robots (Sec. 2.5.4).

2.2 Related Work

In this section, we discuss prior studies in the fields of inverse kinematics and motion planning for matching

the desired end-effector path.

2.2.1 Inverse Kinematics

Inverse kinematics (IK) has been studied widely to find a joint configuration from an end-effector pose [24].

In the case of a redundant manipulator where our target robots belong to, there can be multiple joint configurations

from a single end-effector pose. For this problem, several techniques for quickly finding solutions have been

proposed [10, 25]. In particular, task-priority IK algorithms [26–28] prioritize solutions based on an objective

function for each purpose, e.g., kinematic singularity or constraint task.

Most methods that synthesize a trajectory geometrically constrained for an end-effector pose use the Jacobian

matrix for finding a feasible solution [29–32]. Unfortunately, the Jacobian matrix is the first derivative of the

vector-valued function with multiple variables and thus it can cause false-negative failures by getting stuck in

local minima or convergence failures due to the limits of the joint angle [11].

Trac-IK [11] points out the problem and improves success rates by using randomly selected joint configura-

tions and sequential quadratic programming. Nonetheless, its solutions do not guarantee continuity of a sequence

of joint configurations to make a feasible trajectory [12]. In summary, the traditional IK approaches have different

5

strengths and weaknesses for synthesizing a feasible trajectory.

To get alleviated solutions, many studies have presented optimization techniques with objective functions

for synthesizing a feasible trajectory with matching end-effector poses. [33] use a geometric and temporal opti-

mization to generate a dynamically-feasible trajectory from a sketch input. Recently, [12] proposed a real-time

approach using a weighted-sum non-linear optimization, called RelaxedIK, to solve the IK problem for a sequence

of motion inputs. Since the collision checking has a relatively large computational overhead, RelaxedIK uses a

neural network for fast self-collision avoidance.

Based on RelaxedIK, two studies [13, 34] are proposed for synthesizing a highly-accurate trajectory on off-

line. One of them is Stampede [13], which finds an optimal trajectory using a dynamic programming algorithm in

a discrete-space-graph that is built by samples of IK solutions. The other work [34] generates multiple candidate

trajectories from multiple starting configurations and then selects the best trajectory with a user guide by allowing

a deviation if there are risks of self-collisions or kinematic singularities.

The aforementioned methods, called path-wise IK methods, optimize joint configurations at finely divided

end-effector poses. These optimization methods synthesize an accurate and feasible trajectory satisfied with sev-

eral constraints, i.e., continuity of configurations, collision avoidance, and kinematic singularities. Inspired by

this strategy, we propose a trajectory optimization of a redundant manipulator (TORM) to get a collision-free and

highly-accurate solution. Unlike prior path-wise IK works, our method considers self-collision as well as external

obstacles, thanks to tight integration of an efficient collision avoidance method using a signed distance field.

2.2.2 Motion Planning for Following an End-effector Path

Motion planning involves a collision-free trajectory from a start configuration to a goal configuration. Based

on the framework of motion planning, two methods [14,22] are presented to follow the desired end-effector path in

Cartesian space. One [22] uses an optimization-based method, specifically Trajopt [17], by applying the discrete

Fréchet distance that approximately measures the similarity of two curves. Although the optimization-based

motion planning approaches quickly find a collision-free trajectory using efficient collision avoidance methods,

these approaches can be stuck in local minima due to several constraints (e.g., joint limits and collisions). To assist

its optimizer, this approach separately plans a trajectory by splitting the end-effector path as a set of waypoints

and then sampling an IK solution at each pose.

Its subsequent work [14] points out the limitation of the prior work that samples only one IK solution for

each pose. Considering this property, it presents a sampling-based approach that iteratively updates a layered

graph by sampling new waypoints and IK solutions. However, this method needs a long planning time to get a

highly-accurate solution, even with lazy collision checking to reduce the computational overhead.

Even though these methods find a collision-free trajectory by utilizing a motion planning approach and ran-

dom IK solutions, it is hard to get a highly-accurate solution due to time or structural constraints. To overcome

these difficulties, our method incorporates the Jacobian-based IK solving method into our optimization process,

instead of using only IK solutions. The aforementioned path-wise IK approaches also use the objective function to

minimize the end-effector pose error, but do not combine it with the objective function to avoid external obstacles.

On the other hand, our approach holistically integrates these different objectives and constraints within an opti-

mization framework, inspired by an optimization-based motion planning approach, CHOMP [16], and effectively

computes refined trajectories based on our two-stage gradient descent method.

6

2.2.3 Constrained Motion Planning

A constrained motion planning (CMP) additionally considers kinematic or dynamic constraints in addition

to finding a collision-free trajectory [17, 35–37]. In the case of the kinematic constraint, e.g., pulling a drawer or

opening a door [29], the CMP plans the trajectory while limiting movement to specific transitional or rotational

axes. Our problem is similar to having the kinematic constraint on all transitional and rotational axes to match a

given end-effector path. However, most CMP planners do not have a structure to solve the problem, especially

sampling-based planners [35, 37].

Although an optimization-based motion planner can solve the problem by adding the kinematic constraints to

their optimizer with finely divided end-effector poses in a similar manner of the path-wise IK approaches [12,13],

it is difficult to deal with diverse constraints and objectives, since it tends to fall into a local minimum. For

handling this problem, we present a two-stage gradient descent to refine a trajectory to be feasible and accurate

with a given end-effector path, and an adaptive exploration to escape local minima efficiently.

2.2.4 Gradient descent for a constrained problem

Gradient descent is a first-order iterative method of gradually finding a parameter value to minimize an

objective function. While an unconstrained problem only focuses on minimizing a given objective function, a

constrained problem is important to find a parameter value that minimizes the objective function in a feasible

set [38].

For solving a constrained problem, the projected gradient descent (PGD) conducts a projection onto a feasible

set after minimizing a primary objective function. Another method is conditional gradient descent (CGD), as

known as the Frank-Wolfe algorithm [39], which finds a good feasible direction using a local linear approximation

of the objective function and then moves along the chosen direction in each step.

Based on these algorithms, various works solving constrained problems extend and apply to fit their ap-

plications, e.g., image reconstruction and spike estimation [40–42]. We approach our path-wise problem as a

constrained problem that aims to reduce the error with the target end-effector poses and puts collision and joint

speed limits as constraints. We aim to minimize the error with the poses and solve the problem through our

two-stage gradient descent based on the PGD concept.

2.2.5 Avoiding local minima for trajectory optimization

Optimization-based approaches usually synthesize the desired trajectory quickly but have a problem of falling

into local minima. To escape local minima, STOMP [43] conducts a stochastic optimization, and CHOMP [16]

applies the simulated annealing [44], one of the meta-heuristic algorithms, for its optimization. Recently, [45] use

the Beetle Antennae Search algorithm [46] to improve the robustness of their trajectory optimization.

Another way to avoid local minima is to restart by changing parameter values or initial trajectory [11,47,48].

Similarly, we iteratively explore newly created trajectories to avoid local minima. Furthermore, we accelerate the

exploration by deciding the restart based on the observation of past optimization results.

2.3 Background

In this section, we define the path-wise IK problem we aim to solve and then give the background based on

previous major studies.

7

x0

n

x1 X

x

ξ

Figure 2.2: This figure shows our problem that is synthesizing a feasible and accurate trajectory ξξξ for a given

end-effector path X . The red line is X , which is approximated by end-effector poses X̃ = {xxx0,xxx1, ...,xxxn} (green

dots). The trajectory ξξξ is computed at end-effector poses X̃ . The part of the synthesized trajectory shows that

the end-effector follows the red line, and the sequence of joint configurations is smooth and collision-free, while

avoiding obstacles such as the blue box and the table.

2.3.1 Problem Definition

The path-wise IK problem is to find a trajectory, ξξξ , that matches a given end-effector path, X , as well as

satisfies various constraints, i.e., collisions with obstacles, joint velocity limits, and kinematic singularities. The

trajectory ξξξ is a sequence of joint configurations, and the end-effector path, X , is defined in the six-dimensional

Cartesian space.

Our target robot is a redundant manipulator that has multiple joint configurations given an end-effector pose;

if the manipulator has a controllable degree of freedom (DoF) greater than six, it has infinitely many valid so-

lutions. Among many candidates, we synthesize a set of joint configurations as a trajectory to follow the given

end-effector path accurately, while avoiding collisions for external obstacles and the robot itself (Figure 2.2).

We solve the problem by applying the waypoint parameterization [49] of the path that finely splits the given

end-effector path, X ≈ X̃ = {xxx0,xxx1, ...,xxxn}; xxx ∈ R6 is an end-effector pose. We then compute the joint configura-

tions for end-effector poses X̃ . As a result, the trajectory is approximated as: ξξξ ≈ [qqq0 qqq1 ... qqqn]
T ⊂ R(n+1)×d ,

where d is the DoF of a manipulator. When a start configuration qqq0 is given, we compute the joint configurations

from its next configuration, qqq1, to the goal configuration qqqn. In our problem, however, the start configuration may

not be given, while an end-effector path is given.

To solve our path-wise problem, we present a trajectory optimization of a redundant manipulator (TORM)

that holistically integrates the Jacobian-based IK method and an optimization-based motion planning approach.

Main notations are summarized in Table 2.1.

2.3.2 Jacobian-based Inverse Kinematics

To match a given target end-effector path, our optimizer is based on the Jacobian-based IK method. Many

prior techniques explained in Sec. 2.2.1 utilize the Jacobian-based IK method, since it is very accurate with fast

convergence [11]. In this work, we combine it with an optimization-based approach to quickly get a highly-

accurate trajectory, while avoiding collisions with obstacles and achieving smoothness of joints.

8

Table 2.1: Notation table

Notation Description

X̃ Target end-effector poses that are finely divided from the given end-effector path X

ξξξ Set of joint configurations corresponding to X̃

qqqi Joint configuration on the trajectory ξξξ at i-th end-effector pose xxxi

JJJ Jacobian matrix, i.e., dxxx
dqqq ∈ R6×d

P Set of body points in the workspace approximating the geometric shape of the manipulator

xxx(qqq, p) Partial forward kinematics from the manipulator base to a body point p ∈ P at a configuration qqq

The Jacobian-based IK computes a joint configuration by iteratively minimizing the pose error, Fpose, between

the target and current end-effector pose. Since our work considers the given end-effector path, not a single pose,

we utilize the finely divided end-effector poses X̃ from the given path. Consequently, Fpose for a trajectory is

defined as:

Fpose(ξξξ) =
1
2

n

∑
i=0
‖xxxi−FK(qqqi)‖

2 , (2.1)

where FK(qqqi) computes the end-effector pose at the i-th joint configurations qqqi using forward kinematics (FK).

Note that n is the number of end-effector poses X̃ divided by the waypoint parameterization and qqqi represents

the i-th joint configuration corresponding to the i-th end-effector pose xxxi. In this equation, ‖xxxi−FK(qqqi)‖
2 can

be represented as 1
2 (xxxi−FK(qqqi))

T (xxxi−FK(qqqi)). Accordingly, we can derive the functional gradient of the pose

term, ∇Fpose, by the following:

∇Fpose(qqqi) = JJJT (xxxi−FK(qqqi)), (2.2)

where JJJ = dxxx
dqqq ∈ R6×d is the Jacobian matrix.

2.3.3 Optimization-based Motion Planning

For making a feasible trajectory, we adopt an optimization-based motion planning approach, specifically

CHOMP [16], which synthesizes a smooth and collision-free trajectory based on the covariant gradient descent.

This approach significantly reduces the planning time by incorporating an efficient collision avoidance method into

its optimization process. By incorporating an optimization-based motion planning method with these advantages

into our method, we can quickly get the desired solution, while avoiding collisions against external obstacles and

the robot itself.

CHOMP models an objective function consisting of avoiding collisions and achieving smoothness:

U(ξξξ) = Fobs(ξξξ)+λFsmooth(ξξξ), (2.3)

where λ is a regularization constant. While minimizing the objective function, CHOMP finds a collision-free

trajectory from a start configuration to a goal configuration.

Fobs quantitatively measures proximity to obstacles using a signed distance field that can be calculated from

the geometry of workspace obstacles. The robot body is simplified into spheres, which serve as conservative

bounding volumes for efficient computation. Overall, Fobs for a trajectory can be calculated highly fast and is

formulated as:

Fobs(ξξξ) =
n−1

∑
i=0

P

∑
p

(
1
2

(
c(xxxi+1,p)+ c(xxxi,p)

)∥∥xxxi+1,p− xxxi,p
∥∥) , (2.4)

9

where xxxi,p is partial forward kinematics, i.e., a position of a body point p ∈ P in the workspace at a configuration

qqqi and c(·) is an obstacle cost computed from the signed distance field. At a high level, it approximately measures

the sum of penetration depths between the robot body and the obstacles. Further, ∇Fobs can be derived as the

following:

∇Fobs(qqqi) =
P

∑
p

JJJT
p

(
‖xxx′i,p‖[(III− x̂xx

′
i,px̂xx

′T
i,p)∇c(xxxi,p)− c(xxxi,p)κκκ]

)
, (2.5)

where x̂xx
′
i,p is the normalized velocity vector, and κκκ = ‖xxx′i,p‖−2(III− x̂xx

′
i,px̂xx

′T
i,p)xxx

′′
is the curvature vector.

Fsmooth measures dynamical quantities, i.e., the squared sum of derivatives, to encourage the smoothness

between joint configurations:

Fsmooth(ξξξ) =
1
2

n−1

∑
i=0

∥∥∥∥qqqi+1−qqqi

∆t

∥∥∥∥2

. (2.6)

Using a finite difference method, Fsmooth is represented to Fsmooth =
1
2 ‖ KKKξξξ + kkk ‖2= 1

2 ξξξ
T AAAξξξ +ξξξ

T bbb+ c, where KKK

and kkk are the matrix and vector for a finite-difference, AAA = KKKT KKK, bbb = KKKT kkk, and c = kkkT kkk/2. We can then simply

derive ∇Fsmooth as AAAξξξ +bbb.

2.4 Trajectory Optimization

In this section, we describe the motivation and overview of our approach, followed by giving a detailed

explanation of our proposed methods.

Input: Target end-effector path Output: Synthesized trajectory

Deciding whether to stop
the current exploration

Extracting sub-sampled poses

Generating a new trajectory Refining the trajectory with the TSGD

Checking a given condition

Restart

Figure 2.3: This figure shows an abstraction of our overall algorithm. The blue boxes represent the iterative

process, and one exploration means the refinement process starting from a newly generated trajectory.

2.4.1 Motivation and Overview

A simple way to integrate the Jacobian-based IK and the optimization-based approach is to combine their

objective function. Specifically, we can approach the path-wise problem by iteratively updating the trajectory to

minimize the cost of the objective function consisting of three different terms:

U(ξξξ) = Fpose(ξξξ)+λ1Fobs(ξξξ)+λ2Fsmooth(ξξξ). (2.7)

We, however, found that a naı̈ve approach cannot get a highly-accurate solution due to conflicts among each

functional gradient when updating a trajectory (Figure 2.4a).

Additionally, this optimization-based update method has a probability of falling into local minima due to

its local nature. One way of escaping local minima is to perform a fixed number of local updates by repeatedly

10

ξ

min

0 Fpose

C

ξ2

ξ1

(a) Simple integration

ξ0 Fpose

C

ξ1

ξ2

min

(b) TSGD

Figure 2.4: This shows the illustration of optimization progress for a simple integration using Eq. 2.7, and our

TSGD (Eq. 2.9). Each gray contour line represents equal Fpose, and the center, marked ⊗, of innermost contour

has the smallest Fpose. The simple integration (a) is difficult to reach the minimum Fpose due to conflicts between

three different terms; black arrows represent the update process of the simple integration through the sum of

three functional gradients. On the other hand, our TSGD approaches to the minimum Fpose through alternatively

updating the trajectory toward the feasible set C shown in the red region using ∇Fobs and ∇Fsmooth (green arrow)

and updating the trajectory toward the minimum Fpose using ∇Fpose (blue arrow).

restarting from different values [47]. However, it is rather unclear how many updates we need to perform for our

task.

To alleviate the aforementioned problems, we first present a two-stage gradient descent (TSGD) that opti-

mizes a trajectory by dividing two parts: making a trajectory to be feasible and matching a given end-effector

path. The TSGD mainly focuses on minimizing the pose error, while achieving the feasibility as satisfying various

constraints (Sec. 2.4.2).

We also propose an adaptive exploration (AE) to avoid local minima efficiently. The AE explores differ-

ent new trajectories with the TSGD and adaptively decides whether to stop the current exploration instead of

repeating a fixed number of updates. The stop criterion is decided through the observation of optimization results

(Sec. 2.4.3).

Overall, our algorithm iteratively performs two parts, generating a new trajectory, ξξξ new, (Sec. 2.4.4) and

updating the trajectory (Figure 2.3). An initial trajectory is created in the same way as generating a new trajectory.

The update part locally refines the trajectory using our TSGD, along with examining whether or not to restart the

current exploration. During the iterative process, we find the trajectory that has the smallest Fpose with satisfying

the feasibility (Sec. 2.4.5). This process continues until satisfying a given condition, e.g., running time or cost.

2.4.2 Two-Stage Gradient Descent

Our goal is to get a highly-accurate solution with satisfying the feasibility. To achieve the goal, we holistically

integrate the Jacobian-based IK with an optimization-based motion planning approach. When simply combining

their terms as shown in Eq. 2.7, we can get a solution through iterative refinement of a trajectory, but the computed

trajectory tends to be sub-optimal, because it is updated from the weighted sum of different functional gradients

computed for different, even worse conflicting, purposes (Figure 2.4).

To reduce conflicts between different functional gradients, we present a two-stage gradient descent (TSGD)

that focuses on minimizing Fpose and considers other factors as constraints. Specifically, our optimization problem

11

ξ0

Fpose

C

ξ1

ξ2

min

(a) Case where Fpose is increasingly growing

min

Fpose

C
ξ0

ξ1ξ2

(b) Case where Fpose is reducing without the feasibility

Figure 2.5: This illustrates two problematic cases for ineffective exploration; the information of this figure can

be seen in Figure 2.4. Note that these figures are examples of one exploration from a newly generated trajectory,

ξ0. (a) is the case where Fpose gradually increases due to the strong tendency to make a feasible trajectory. In

contrast, (b) is the case where Fpose is gradually reduced, but it is still not feasible.

is defined as a constrained problem:

argmin
ξξξ

Fpose(ξξξ), subject to ξξξ ∈C, (2.8)

where C is a feasible set.

Our TSGD solves Eq. 2.8 by iteratively performing two parts consisting of updating to make a feasible trajec-

tory and updating the trajectory to match closer to the minimum point in terms of Fpose, marked as⊗ (Figure 2.4b).

We design our TSGD inspired by the projected gradient descent that conducts a projection onto a feasible set C

after minimizing a primary objective function to solve a constrained problem. Instead of the projection, we update

the trajectory to be feasible by minimizing Fobs and Fsmooth. Since the feasible set C cannot be computed at once

due to the complexity of the constraints [16, 17, 36], we find a feasible trajectory by repeatedly minimizing Fobs

and Fsmooth.

Concretely, our TSGD is repeated in which each odd iteration updates the trajectory using ∇Fobs and ∇Fsmooth,

and in which even iteration updates the trajectory using ∇Fpose:

ξξξ i+1 =

ξξξ i−η1AAA−1(∇Fobs +λ∇Fsmooth), if i is odd,

ξξξ i−η2∇Fpose, otherwise,
(2.9)

where η is a learning rate, and AAA is from an equally transformed representation of the smooth term (see the

bottom of Sec. 2.3.3). AAA−1 acts to retain smoothness and to accelerate the optimization by having a small amount

of impact on the overall trajectory. ∇Fobs and ∇Fsmooth using AAA−1 have a computational benefit by giving an

influence between successive joint configurations, which is shown in [16, 50]. On the other hand, ∇Fpose does not

apply AAA−1 to compute highly-accurate joint configurations matched for each finely divided end-effector pose.

Our TSGD needs a more number of iterations by performing two separate updates over the simple integration

(Eq. 2.7). Nevertheless, we found that our method shows a faster convergence speed than the simple integration

(Figure 2.9); in our experiment, our TSGD shows at least 100 times less pose error over the simple integration

(Table 2.5). This is thanks to the TSGD, which effectively resolves conflicts between constraints.

12

2.4.3 Adaptive Exploration

Our update rule based on gradient descent has a probability to fall into sub-optimal due to its local nature.

Furthermore, there can be many surrounding local minima in our solution space, since we consider several differ-

ent properties of constraints, e.g., collisions, velocity limits, and matching a given path.

To effectively avoid getting stuck in local minima, we suggest an adaptive exploration (AE) that can explore

new, different trajectories, while examining whether to stop each exploration part or not. Note that a redundant

manipulator can have multiple joint configurations at a single pose, thus we can construct many candidate trajec-

tories. By utilizing this property, we generate new, different trajectories, which are locally refined based on our

TSGD.

An iterative exploration, starting with new values, has been used to avoid local minima in works based on the

gradient descent [11,47]. On the other hand, the iterative exploration has the drawback of computational waste by

performing a fixed number of iterations for each exploration.

To improve the effectiveness of the exploration, we set a stopping criteria inspired by accelerated gradient

methods [51, 52], which can dramatically improve the convergence rate through a heuristic restart scheme. Our

AE restarts when it is likely that the exploration progress is ineffective, or makes little change in the recently

updated trajectories as a local minimum.

We have observed that our optimizer has poor exploration in typically two cases. One of the cases is that

Fpose is increasing as the force to satisfy the constraints is strong (Figure 2.5a). The other case is that Fpose is

gradually reduced, but any trajectories do not achieve the feasibility (Figure 2.5b). These cases may occur as one

of the two stages has a greater impact on the optimization, but are more affected by an initial trajectory, ξξξ 0. When

the initial trajectory is not good enough, such as violating the constraints in many parts of the trajectory, finding

the desired solution only with local updates is difficult. Such importance of initial values in optimization-based

planning has been discussed in several works [11, 33]. Hence, we can accelerate our optimization by restarting

from a new trajectory when the current exploration is judged to the aforementioned cases.

The AE makes a decision to restart by checking whether the exploration progress corresponds to either one

of the two cases or falls into a local minimum. To do that, we set a restart scheme based on the past optimization

results, specifically pose error Fpose and feasibility; the results are calculated after even iteration in the TSGD. Our

restart scheme examines the change tendency of Fpose approximately by computing the average slope of past m

Fpose based on the current Fpose:

β =
1
m

m

∑
i=1

(Fu
pose−Fu−i

pose)/i, (2.10)

where u is the current iteration index; if u < m, we do not execute this process, and we set m to 5. Specifically,

we first examine whether the current exploration falls into a local minimum by checking |β | < 1× 10−6. Next,

we examine whether the current exploration corresponds to two cases of ineffective exploration (Figure 2.5). The

first case (Figure 2.5a) where Fpose is gradually increasing is checked by β > 0.1. The second case (Figure 2.5b)

where Fpose is enough reduced without the feasibility is checked by simultaneously testing |β | < 1× 10−3 and

examining whether the constraints are satisfied. Note that the exploration is continued if the aforementioned, three

conditions are not satisfied.

We decide the restart from a new trajectory through a simple, yet effective restart scheme. As a result, our

approach shows a faster convergence than performing an exploration by a fixed number of iterations (Table 2.5).

This is mainly thanks to the adaptive iterations.

13

x0
nx

(a) 50 intervals (8)

0 nx x
(b) 50 intervals (13)

(c) 10 intervals (33) (d) 10 intervals (57)

(e) Path simplification (9) (f) Path simplification (25)

Figure 2.6: This figure shows sub-sampled poses S (blue dots), extracted from finely divided end-effector poses

X̃ (red dots), in the problem of square tracing and writing “hello”. From S, we construct a new trajectory ξnew that

starts with random IK solutions and is found in a greedy manner minimizing Eq. 2.7. (a,d) and (b,e) are extracted

uniformly at 10 and 50, respectively. (c) and (f) are the results computed by the path simplification using the DP

algorithm. () represents the number of extracted sub-sampled poses as blue dots. (b) has too many S, increasing

the time to generate a new trajectory ξξξ new. On the other hand, (d) has a small number of S, which is not enough to

make an potentially good trajectory. On the other hand, we apply the path simplification to extract the appropriate

S (c, f) regardless of various forms of paths.

2.4.4 New Trajectory Generation

Each exploration part generates a new trajectory ξξξ new. We strive to find a potentially good trajectory for our

local optimization, which considers our objectives with smoothness, avoiding obstacles, and following a given

path. Because merely connecting start and goal configurations can result in a sub-optimal solution, especially in

cases of complex scenarios (e.g., Figure 2.6 and environments with external obstacles) [22].

Overall, we consider random configurations and choose one that minimizes three different terms (Eq. 2.7) in

a greedy manner for generating an initial trajectory. As the first step, we extract sub-sampled poses, S, from the

end-effector poses X̃ , since working with more poses tends to increase the complexity of generating a trajectory.

We can uniformly extract S at γ intervals from X̃ , but it is challenging to set γ for effectively handling various

end-effector paths (Figure 2.6). For example, when the interval is small, the generation time increases. On the

other hand, when the interval is large, the quality of the path may deteriorate.

To handle this trade-off problem, we extract the most important poses that can well maintain the shape of

a given path. To compute such important poses, we apply the path simplification method, specifically Douglas-

14

Peucker (DP) algorithm [53]. In our method, the DP recursively extracts X̃ finding the furthest pose between two

poses that are initially start and end poses. This recursive process stops when the furthest pose is closer than a

given distance.

In the case of having a long distance between two adjacent sub-sampled poses computed from the DP, there

is a probability to create poor quality of trajectory. Accordingly, we additionally extract S so that there are no

more than 50 poses between the two adjacent poses. Note that this extraction process is a one-time operation that

is cached and reused during all the exploration processes.

In the next step, we find suitable joint configurations at the sub-sampled poses. For the first, sub-sampled pose

as the start end-effector pose xxx0, we simply compute a random IK solution at the pose if a start configuration is

not given. For its next pose, we compute j random IK solutions at the pose and greedily select one that minimizes

Eq. 2.7 when connecting it with the configuration of the previous pose; we set j to 100. Lastly, we connect chosen

joint configurations through linear interpolation for generating a new trajectory, which is then locally refined by

our TSGD.

Our trajectory generation method sometimes generates a poor quality of trajectory due to its random na-

ture. Even though we can reduce the randomness by increasing the number of sub-sampled poses with many IK

solutions, it exponentially increases the generation time. We, therefore, extract sub-sampled poses at appropriate

intervals using the path simplification to maintain a balance between generation time and quality of trajectory. Fur-

thermore, we compensate for the randomness of the generated trajectory by exploring various trajectories through

adaptive exploration (Sec. 2.4.3).

2.4.5 Trajectory Constraints

During the optimization process, we may find a low-cost solution, but it can violate several constraints. For

example, a trajectory can have collisions with obstacles or self-collisions, even though the trajectory accurately

follows a given end-effector pose. Hence, we check collisions every time we find a better trajectory during our

optimization process.

In addition to the collision checking, a manipulator commonly has several constraints that must satisfy lower

and upper limits of joints, velocity limits, and kinematic singularities for joints. In the case of lower and upper

limits of joints, it is traditionally handled by performing L1 projection that resets the violating joints value to its

limit value. To retain smoothness, we use a smooth projection used by CHOMP [16] during the update process.

The smooth projection uses the Riemannian metric AAA−1. In other words, an updated trajectory, ξ̃ξξ , is defined as

ξ̃ξξ = ξξξ +αAAA−1vvv, where vvv is the vector of joint values, and α is a scale constant. This process is repeated until

there is no violation.

For other constraints like the velocity limit, we check them together while checking collisions. The velocity

limit for joints is checked by computing the velocities of joints between qqqi−1 and qqqi for a given time interval, ∆t.

Another constraint is the kinematic singularity that is a point where the robot is unstable, and it can occur when

the Jacobian matrix loses full rank. To check kinematic singularities, we use the manipulability measure [54]

used by RelaxedIK [12]. At a high level, it avoids making the manipulability measure less than a certain value

that is computed by random samples. Note that our method returns the lowest cost trajectory guaranteed through

checking constraints for constructing a feasible trajectory.

15

(a) Square tracing with the table (b) “S” tracing with the table and one

box

(c) “S” tracing with two boxes

(d) Circle tracing within a box

Pitch ±45˚

Yaw ±45˚

(e) Rotation task (f) Writing “hello”

Figure 2.7: This shows six problems with three different robots, Kuka 7-DoF, Fetch 7-DoF, and Hubo 8-DoF.

Four problems, (a) to (d), include external obstacles and two problems, (e) and (f), do not have external obstacles.

The red line represents the given end-effector path.

2.5 Experiments and Analysis

In this section, we provide various experiment results, and discussions of our method and other prior works

using three different configurations of robots, Kuka 7-DoF, Fetch 7-DoF, and Hubo 8-DoF. Furthermore, we test

our method with the real Fetch robot.

We report the average performance by performing 20 tests with a machine that has 3.6 GHz Intel i7-9700 CPU

and 32 GB RAM. In this experiment, we compute the pose error with target end-effector poses using a weighted

sum of the Euclidean distances of the translational and rotational parts, which was used in the work of [14]; the

adopted weight of the rotational distance over the translational distance is 0.17. In addition, we construct the

target end-effector poses for calculating the pose error by adding one more between the poses used for planning.

This is because the error calculation using only poses used for planning may not be precise in determining the

concordance rate with a given end-effector path, since our target robot, a redundant manipulator, has various joint

configurations for one pose.

2.5.1 Experiment setting

We prepare six problems (Figure 2.7) with external obstacles and two non-obstacle problems to evaluate and

compare our method with prior methods, CHOMP [16], Trajopt [17], RelaxedIK [12], Stampede [13], and the

work of [14]. In this section, we call the work of [14] EIGS, taken from their paper title.

Four problems with obstacles are the square tracing with the table, the “S” tracing with the table and blue

box, the “S” tracing with two boxes, and the circle tracing with surrounding obstacles. At these problems, we do

not test for RelaxedIK and Stampede, since these prior methods did not consider external obstacles.

To compare ours against those prior methods, we prepare two non-obstacle problems, rotating ±45 degrees

in the direction of pitch and yaw, and writing “hello”, by adapting problems used in those methods; we just change

writing “icra” to “hello”.

16

Table 2.2: Results of different methods, CHOMP, Trajopt, EIGS, and ours in four problems including external

obstacles. The bold text indicates the smallest pose error, and the underline indicates the second smallest pose

error.

PE: Pose error. SD: Standard Deviation. TL: Trajectory length (rad). NF: Number of failures. IST: Initial solution time (s). PT: Planning time (s).

Kuka 7-DoF Fetch 7-DoF Hubo 8-DoF

PE / SD TL NF IST PT PE / SD TL NF IST PT PE / SD TL NF IST PT

Square tracing
CHOMP 2.25e-2 / 7.9e-3 9.4 0 0.4

50

2.17e-2 / 3.3e-3 8.5 0 0.6

50

2.82e-2 / 1.3e-2 11.0 0 5.5

50with the table
Trajopt 3.33e-3 / 8.0e-3 7.9 0 3.4 1.46e-2 / 2.7e-3 10.3 1 4.5 7.80e-3 / 5.6e-3 11.1 5 7.3

(fixed qqq0)
EIGS 6.39e-3 / 1.3e-3 24.1 0 5.2 5.11e-3 / 1.2e-3 25.6 0 3.5 6.90e-3 / 1.1e-3 36.6 0 6.0

Ours 6.37e-6 / 1.3e-6 7.9 0 0.7 6.33e-6 / 1.0e-6 8.3 0 0.8 1.51e-5 / 6.9e-6 10.8 0 3.1

“S” tracing CHOMP 5.94e-3 / 8.3e-4 6.0 0 4.7

50

1.53e-2 / 2.7e-3 7.1 0 7.9

50

7.2e-2 / 4.6e-2 13.5 0 10.1

50
with the table Trajopt 4.61e-6 / 7.6e-6 5.9 0 3.3 5.70e-2 / 5.8e-2 8.7 2 3.8 9.05e-3 / 1.0e-2 10.0 7 8.3

and one box EIGS 5.50e-3 / 8.1e-4 25.1 0 3.6 4.51e-3 / 7.2e-4 21.6 0 2.9 8.50e-3 / 1.8e-3 29.2 0 5.2

(fixed qqq0) Ours 1.72e-6 / 6.4e-7 6.0 0 1.1 6.00e-6 / 2.1e-6 7.0 0 1.2 6.85e-5 / 4.7e-5 11.7 0 2.6

“S” tracing
CHOMP 3.66e-2 / 4.2e-2 7.6 0 4.3

50

7.52e-3 / 1.3e-3 6.1 0 6.8

50

2.31e-2 / 1.4e-2 9.8 1 6.9

50with the table
Trajopt 6.69e-6 / 5.3e-6 7.1 3 3.2 7.30e-6 / 3.9e-6 6.7 7 3.8 1.90e-3 / 4.9e-3 8.3 9 3.6

and one box
EIGS 4.64e-3 / 6.1e-4 24.0 0 3.9 5.02e-3 / 1.1e-3 18.8 0 3.2 8.34e-3 / 1.8e-3 31.4 0 6.2

Ours 1.80e-6 / 1.9e-6 5.6 0 1.2 1.35e-6 / 1.3e-6 5.7 0 1.4 1.85e-5 / 1.6e-5 8.4 0 3.7

“S” tracing
CHOMP 1.53e-2 / 3.4e-3 8.4 1 5.0

50

3.22e-2 / 1.3e-3 11.0 0 2.3

50

4.29e-2 / 2.0e-2 11.2 2 11.8

50with two boxes
Trajopt 2.21e-2 / 2.6e-2 9.4 4 1.2 8.54e-5 / 9.1e-5 10.8 6 2.9 5.16e-3 / 6.7e-3 10.2 9 3.4

(fixed qqq0)
EIGS 1.70e-2 / 1.0e-3 33.9 0 3.7 8.62e-3 / 5.4e-3 25.5 0 3.0 9.68e-3 / 1.2e-3 26.5 0 5.1

Ours 9.26e-6 / 2.9e-6 8.2 0 1.4 1.36e-5 / 2.6e-6 9.7 0 1.8 1.12e-4 / 7.1e-4 10.2 0 4.9

Circle tracing CHOMP 1.83e-2 / 7.4e-4 7.8 0 0.6

50

1.68e-2 / 7.6e-4 7.0 0 2.4

50

4.77e-2 / 2.5e-2 8.5 1 7.4

50
with surrounding Trajopt 3.54e-5 / 4.5e-5 7.5 0 3.4 2.26e-2 / 2.4e-2 8.7 8 1.8 1.15e-2 / 1.3e-2 7.8 6 15.7

obstacles EIGS 4.72e-3 / 1.0e-3 24.9 0 3.9 5.40e-3 / 1.2e-3 16.9 0 2.7 1.06e-2 / 4.2e-3 24.2 0 6.3

(fixed qqq0) Ours 7.20e-6 / 4.5e-7 7.8 0 0.7 7.27e-6 / 1.5e-6 7.5 0 1.3 1.10e-4 / 3.8e-4 7.8 0 6.3

Circle tracing
CHOMP 2.91e-2 / 1.5e-2 7.8 0 0.6

50

1.16e-2 / 3.0e-3 6.9 0 2.0

50

2.67e-2 / 2.0e-2 8.7 3 9.4

50with surrounding
Trajopt 8.53e-6 / 6.3e-6 7.7 3 4.3 2.89e-5 / 5.1e-5 6.9 9 2.3 1.91e-3 / 6.0e-3 7.9 8 5.7

obstacles
EIGS 5.34e-3 / 6.5e-4 23.1 0 4.2 6.05e-3 / 9.9e-4 14.8 0 2.9 6.93e-3 / 1.4e-3 19.4 0 5.9

Ours 4.96e-6 / 3.2e-6 7.4 0 0.8 2.30e-6 / 1.3e-6 6.8 0 0.8 1.13e-5 / 1.3e-5 8.0 0 5.5

We used the code of RelaxedIK and Stampede that are provided by authors through their websites. For

RelaxedIK, Stampede, and our method, the end-effector paths of all problems are finely divided and are fed into

all the tested methods; in our experiment, the distance between two divided end-effector poses is about 0.005m

for translation and 0.02rad for rotation, following the protocol adopted in [13]. On the other hand, EIGS initially

splits the end-effector path and gradually breaks down the path during the planning.

In CHOMP and Trajopt, we modified their setting for solving the existing constrained motion planning prob-

lem (Sec. 2.2.3) to solve the path-wise problem. Their setting considers various kinds of kinematic constraints, and

we gave the kinematic constraint on all transitional and rotational axes with the finely divided end-effector poses.

Also, we set CHOMP and Trajopt to find a trajectory that minimizes pose error while satisfying the constraints as

in our method (Sec. 2.4.5). In addition, we gave an initial trajectory computed by our new trajectory generation

method (Sec. 2.4.4), since both planners cannot solve our problems mostly without the initial trajectory.

We mainly evaluate whether the synthesized trajectory accurately follows the given end-effector path. Note

that reported results were extracted from feasible trajectories satisfying the given constraints (Sec. 2.4.5).

17

Table 2.3: Results of different methods, CHOMP, Trajopt, EIGS, RelaxedIK, Stampede, and ours in two non-

obstacle problems. RelaxedIk is a real-time planner and does not provide better trajectories with more planning

time; we provide its results while it cannot be compared in the equal-time comparison. RelaxedIK and Stampede

experimented with non-obstacle problems since these methods only check self-collision. The bold text indicates

the smallest pose error, and the underline indicates the second smallest pose error.

PE: Pose error. SD: Standard Deviation. TL: Trajectory length (rad). NF: Number of failures. IST: Initial solution time (s). PT: Planning time (s).

Kuka 7-DoF Fetch 7-DoF Hubo 8-DoF

PE / SD TL NF IST PT PE / SD TL NF IST PT PE / SD TL NF IST PT

RelaxedIK 3.93e-2 / 3.7e-3 8.9 0 - 6.3 7.31e-2 / 4.3e-3 12.1 0 - 6.1 8.29e-2 / 6.6e-3 8.9 0 - 7.3

Rotation task
Stampede 5.85e-5 / 1.8e-6 9.5 0 28.5 6.49e-5 / 1.9e-6 12.4 0 35.7 2.58e-4 / 8.2e-5 9.8 0 38.0

without
CHOMP 7.33e-3 / 3.3e-3 8.7 0 0.3 2.51e-2 / 7.8e-3 14.3 0 0.5 2.83e-2 / 1.1e-2 11.7 0 1.2

obstacles
Trajopt 2.85e-3 / 3.7e-3 6.6 0 1.1 28.5 5.85e-4 / 8.3e-4 12.6 0 2.0 35.7 1.49e-2 / 2.2e-2 10.7 4 6.3 38.0

EIGS 1.40e-2 / 4.2e-3 17.1 0 4.2 8.30e-3 / 1.5e-3 17.8 0 4.3 7.41e-3 / 1.6e-3 19.2 0 5.6

Ours 5.53e-5 / 3.3e-5 8.9 0 0.5 6.96e-5 / 3.8e-6 13.3 0 0.6 2.21e-4 / 1.3e-4 10.5 0 1.5

RelaxedIK 4.10e-2 / 2.1e-3 19.2 0 - 16.7 5.04e-2 / 4.6e-3 21.6 0 - 16.0 5.29e-2 / 8.7e-3 27.4 0 - 17.2

Writing “hello”
Stampede 3.28e-5 / 4.7e-5 20.3 0 30.4 4.71e-5 / 6.6e-5 24.8 0 38.3 9.10e-5 / 2.0e-4 29.7 0 45.1

without
CHOMP 1.27e-1 / 2.8e-2 36.0 0 1.1 3.76e-2 / 3.7e-3 26.3 0 1.2 6.43e-2 / 3.5e-2 32.5 0 4.5

obstacles
Trajopt 2.42e-3 / 2.6e-2 25.5 0 5.5 30.4 1.54e-3 / 5.9e-2 28.4 2 6.9 38.3 1.71e-2 / 6.0e-3 31.1 4 7.1 45.1

EIGS 2.23e-2 / 3.8e-3 49.2 0 11.7 1.7e-2 / 2.1e-3 36.9 0 11.4 1.7e-2 / 1.9e-3 49.0 0 13.2

Ours 3.13e-5 / 1.0e-5 22.5 0 1.5 4.36e-5 / 3.6e-6 26.0 0 1.3 3.3e-4 / 5.3e-4 31.8 0 5.2

2.5.2 Comparison with prior methods

In four problems including external obstacles, we fix the start configuration qqq0 located close to the obstacles

in order to see how well different methods can avoid external obstacles (Figure 2.7). For non-obstacle problems

and two obstacle problems, we do not fix qqq0 to see how different methods handle qqq0 during the planning process.

Table 2.2 and Table 2.3 show the overall results of different methods, including three different robots. Fig-

ure 2.8 shows the trajectory quality of different methods, as we have more planning time up to the maximum

planning budget of 50 seconds. On the other hand, Table 2.3 shows a snapshot result of the trajectory computed

at a specific planning time.

For the non-obstacle problems, the rotation task and writing “hello”, we report results by the initial solution

time of Stampede, instead of 50 seconds; within 50 seconds, Stampede computed only a single trajectory. Note

that in the case of RelaxedIK, a real-time planner, it quickly synthesizes one trajectory at one execution, but its

computed trajectory tends to be low-quality.

CHOMP, Trajopt, and our method find an initial solution faster than other methods in most problems (Ta-

ble 2.2). This is because these techniques set an initial trajectory using our new trajectory generation method.

It also supports that our new trajectory generation method quickly synthesizes a potentially good trajectory

(Sec. 2.4.4).

Nonetheless, CHOMP shows the highest pose error in most problems, even though it gradually reduces the

pose error over planning time. Our method is based on CHOMP, but we achieved a highly-accurate solution

thanks to the update through our TSGD by combining the Jacobian-based IK approach and CHOMP. In addition,

Table 2.4 shows the computational advantage of our TSGD combined with the Jacobian-based IK approach com-

pared to CHOMP considering various kinds of kinematic constraints; in CHOMP, multiple matrix calculations are

performed to take into account various kinematic constraints (see [16]).

18

0 10 20 30 40 50
Planning time [s]

0

0.01

0.02

0.03

0.04

0.05

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(a) Square tracing using the Kuka 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

P
os

e
er

ro
r

RelaxedIK
Stampede
CHOMP
Trajopt
EIGS
Ours

(b) Rotation task using the Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(c) Circle tracing using the Hubo 8-DoF

Figure 2.8: This shows the pose error over the planning time of different methods in three different problems.

Since (a) and (c) include external obstacles, RelaxedIK and Stampede are excluded from the experiments. Also,

the start configurations of (a) and (c) are fixed. We visualize graphs once an initial solution is computed.

Trajopt has the highest number of failures due to falling into a local minimum, even though it had good results

in some problems, e.g., “S” tracing with two boxes using Fetch 7-DoF. Especially, there are many failures in the

two problems, “S” tracing with two boxes and circle tracing, surrounded by obstacles in the given end-effector

path. This is because Trajopt uses the second-order method, so the update time is long, making it difficult to

explore various trajectories during a given planning time. On the other hand, our method did not record failures

by exploring new trajectories thanks to the very fast update of our TSGD based on gradient descent (Table 2.4).

From comparison with optimization-based motion planning considering geometric constraints, we can see

that our proposed method effectively optimizes the path-wise IK problem to synthesize a highly-accurate solution

while avoiding local minima. In addition, although optimization-based approaches generally have difficulty in

changing a start configuration qqq0 during the planning process, our method is quite straightforward to change qqq0

thanks to adaptively exploring new trajectories including qqq0. As a result, our method did not record failures in all

problems.

EIGS refines a trajectory by progressively sampling new waypoints and IK solutions. Nonetheless, our

method improves the quality of the trajectory over EIGS, as we have more planning time (Figure 2.8). This

improvement is mainly because our method incorporates the IK solving method into the optimization process

instead of simply using IK solutions.

In Table 2.2, EIGS shows the longest length of the computed trajectory on average for all problems; we

measure the length of a trajectory using the Euclidean distance. EIGS does not consider the distance in C-space,

since it only checks the similarity measure of two curves using the discrete Fréchet distance [14]. On the other

19

Table 2.4: Results of the number of iterations and explorations during 50 seconds for optimization-based ap-

proaches, CHOMP, Trajopt, and ours. Parenthesis indicates the time (s) for one update of its optimizer. We regard

one update of Trajopt as one execution of the quadratic solver.

Circle tracing Writing “hello”

of iteration # of exploration # of iteration # of exploration

Kuka
CHOMP 751 (0.05) - 204 (0.23) -

7-DoF
Trajopt 13 (2.5) - 10 (4.3) -

Ours 542 (0.03) 61 392 (0.06) 29

Fetch
CHOMP 776 (0.05) - 208 (0.20) -

7-DoF
Trajopt 11 (3.0) - 8 (5.4) -

Ours 582 (0.03) 60 561 (0.06) 10

Hubo
CHOMP 256 (0.15) - 86 (0.43) -

8-DoF
Trajopt 8 (4.9) - 5 (7.8) -

Ours 173 (0.12) 14 115 (0.30) 7

Table 2.5: Analysis of components of our proposed method by substituting them to alternative methods, the

simple integration (SI), iterative exploration (IE), and extracting sub-sampled poses at 10 and 50 intervals. The

last row shows the results of our complete method.

Problem Writing “hello” using Fetch 7-DoF Writing “hello” using Hubo 8-DoF Square tracing using Hubo 8-DoF

Method Pose error
TL IST PT

Pose error
TL IST PT

Pose error
TL IST PT

Update Exploration Extracting S Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

SI Adaptive PS 9.7e-3 2.9e-3 2.5e-2 28.4 1.4 3.2e-2 5.8e-3 1.3e-1 32.1 6.6 1.3e-2 4.8e-3 2.2e-2 13.3 5.4

TSGD Adaptive 50 intervals 1.2e-2 4.1e-5 8.7e-2 25.9 0.9 2.1e-2 4.7e-5 8.4e-2 25.8 3.6 1.5e-3 2.3e-6 2.3e-2 9.8 3.6

TSGD Iterative PS 1.6e-3 4.0e-5 3.2e-2 27.8 1.4
10

9.8e-3 5.2e-5 1.5e-1 31.7 4.9
40

7.6e-4 7.6e-6 1.5e-2 11.2 3.4
30

TSGD Adaptive 10 intervals 1.6e-3 6.7e-5 1.3e-2 34.7 2.5 3.2e-3 1.1e-4 2.7e-2 46.4 9.6 7.7e-4 8.6e-5 6.0e-3 31.4 5.5

TSGD Iterative 10 intervals 1.7e-3 8.1e-5 1.2e-2 33.1 2.4 4.1e-3 1.2e-4 2.4e-2 50.5 12.2 2.3e-3 9.9e-5 1.9e-2 31.8 6.4

TSGD Adaptive PS 5.6e-5 4.4e-5 1.0e-4 26.7 1.3 3.3e-4 5.1e-5 2.4e-3 31.8 5.2 2.6e-5 7.6e-6 1.1e-4 10.6 3.2

TL: Trajectory length (rad). IST: Initial solution time (s). PT: Planning time (s).

hand, other methods take into account the smoothness between joint configurations and thus generate shorter

trajectories than EIGS.

Stampede is also a sampling-based approach like EIGS, but it generates a highly-accurate solution on average

(Table 2.3). Stampede does not deal with external obstacles, but uses a neural network to check self-collision

quickly. However, it takes a long time to get an initial solution, because it has to samples IK solutions at all the

end-effector poses. These results show that Stampede and EIGS have different pros and cons.

RelaxedIK is a real-time planner, thus it quickly finds a solution (Table 2.3). However, its accuracy is much

lower than other methods. In conclusion, RelaxedIK shows real-time performance by quickly optimizing the joint

configuration for one pose, but it is difficult to obtain a highly-accurate trajectory.

Overall, our method finds an initial solution quite quickly with a high pose error, but improves its quality as

we have more planning time (Figure 2.8). Also, our method has a lower pose error with a lower standard deviation

on average than other methods, as shown in Table 2.2 and Table 2.3. These results support that our optimization

process efficiently reduces the pose error, while satisfying several constraints.

20

0 5 10 15
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(a) Writing “hello” using the Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.05

0.1

0.15

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(b) Writing “hello” using the Hubo 8-DoF

0 10 20 30 40
Planning time [s]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P
os

e
er

ro
r

SI + AE + PS
TSGD + IE + PS
TSGD + AE + 10 intervals
TSGD + AE + 50 intervals
TSGD + IE + 10 intervals
TSGD + AE + PS (Ours)

(c) Square tracing using the Hubo 8-DoF

Figure 2.9: This shows the pose error as a function of the planning time of various ablated methods. Our complete

method contains two-stage gradient descent (TSGD), adaptive exploration (AE), and path simplification (PS). We

substitute them with the simple integration (SI), the iterative exploration (IE) with the fixed number of iterations,

and extracting sub-sampled poses at 10 and 50 intervals. The gray dotted lines represent the results shown in

Table 2.5.

2.5.3 Analysis of our proposed methods

To see the benefits of components of our proposed method, we conduct ablation study. We first substitute

the two-stage gradient descents (TSGD) to the simple integration (SI) updating three functional gradients at once.

Next, we test the iterative exploration (IE) iterated a fixed number of update instead of our adaptive exploration

(AE). Finally, we compare different ways of extracting sub-sampled poses, 10 and 50 intervals, and the chosen

path simplification (PS).

Table 2.5 shows the results of aforementioned methods for three different problems, writing “hello” using the

Fetch 7-DoF and the Hubo 8-DoF, and square tracing using the Hubo 8-DoF; the start configuration of the square

tracing is fixed. Figure 2.9 also shows the results, as we have more planning time up to the maximum planning

budget of 50 seconds.

As shown in Figure 2.9a, it is hard to check the big difference between different methods due to its fast

convergence when we use the Fetch 7-DoF. On the other hand, we can confirm the pros of proposed methods in

experiments using the Hubo 8-DoF (Figure 2.9b and Figure 2.9c). We analyze the results for different configura-

tions of robots in Sec. 2.5.4.

21

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(a) Using Kuka 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.02

0.04

0.06

0.08

0.1

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(b) Using Fetch 7-DoF

0 10 20 30 40 50
Planning time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

P
os

e
er

ro
r

CHOMP
Trajopt
EIGS
Ours

(c) Using Hubo 8-DoF

Figure 2.10: This shows the pose error over the planning time of different methods with three different robots in

“S” tracing with two boxes.

Using the SI has a higher pose error on average than our full method, and it also has the highest min. pose

error among 20 tests, compared to other tested methods (Table 2.5). These results demonstrate that the different

functional gradients conflict with each other. Therefore, the TSGD prevents the competition of different functional

gradients and is useful to get a highly-accurate solution. Note that the SI is different approach from CHOMP. The

SI is the simple integration of Fobs, Fsmooth, and Fpose, the objective of the Jacobian-based IK, while CHOMP is

a reconfiguration of the original update rule to consider various kinds of kinematic constraints [16]; we set the

kinematic constraints on all transitional and rotational axes to match a given end-effector path.

Our method shows the fast convergence rather than using the IE (see green and red lines with dots Figure 2.9).

In Table 2.5, the max. pose errors of our method are also lower than using the IE at a specific planning time.

These results indicate that the AE makes a good decision to stop the current exploration based on the observation

of optimization results.

Extracting sub-sampled poses S at 50 intervals shows the fastest result of finding an initial solution in the

problem of writing “hello”, while 10 intervals is the slowest. On the other hand, extracting S at 10 intervals shows

the better performance than 50 intervals. The time of generating a trajectory is reduced as having smaller sub-

sampled poses, but we can get a low-quality path if sub-sampled poses are too few. To generate a trajectory, 10

intervals, 50 intervals, and the PS take 7.2, 3.8, and 2.1 seconds in the writing “hello” problem using the Hubo

8-DoF. Although the generation time of the PS is in the middle of 10 and 50 intervals, the PS shows the better

performance than others. These results demonstrate that the PS strikes a good balance between the generation

time and trajectory quality.

22

In summary, these results show that our proposed method synthesizes highly-accurate trajectories, while

effectively getting out of local minima. Furthermore, we can see that the proposed method is more accelerated,

about 43 times faster on average across all the tested cases, than the conference version of TORM (the green line

with star dots in Figure 2.9).

Time analysis of our proposed methods. In our optimizer, performing TSGD, generating new trajectories, and

checking constraints of our method take 70%, 26%, and 4% of the overall running time on average; the TSGD

is frequently iterated to refine the trajectory, as the main update operation. The PS is executed once, and it is

calculated very quickly in about 0.25 seconds for the writing “hello” problem that has the longest path in our

problems.

2.5.4 Analysis with different robots

To analyze the results with different robots, we compare results in the problem of “S” tracing with two boxes

by using three different robots. It is difficult to directly compare them even with the same problem, but we can

see overall tendency of the results. Figure 2.10 shows the results of “S” tracing with two boxes by using different

robots, Kuka 7-DoF, Fetch 7-DoF, and Hubo 8-DoF.

In Figure 2.10, our method quickly minimizes the pose error, as having more planning time. Within the given

50 seconds, we also get highly-accurate results across different problems (Table 2.2). In our method, nevertheless,

using the Hubo 8-DoF shows a slower convergence speed than using the Fetch 7-DoF and Kuka 7-DoF. One of

main reasons is an increase in DoF, which requires higher computational overhead of the overall method. Other

methods also show that using the Hubo 8-DoF generally has worse performances compared to using other robots

(Table 2.2).

In our method, the biggest difference arises due to the number of spheres approximating the robot model to

get the collision costs effectively. The Hubo 8-DoF has 163 spheres, while the Fetch 7-DoF and Kuka 7-DoF have

41 and 27, respectively. As a result, the computation time of the Hubo 8-DoF is 120ms, and the computation time

of the Kuka 7-DoF and the Fetch 7-DoF is approximately 20ms for one trajectory (Eq. 2.4) in the problem of “S”

tracing with two boxes.

Even though the Fetch robot has torso, head, and lower body in addition to an arm, we use only the arm of

Fetch, and thus other parts of the Fetch are treated to be fixed. Since the fixed part can be regarded as a fixed

obstacle, the amount of calculation is reduced by constructing a distance field in advance. On the other hand, the

Hubo 8-DoF has few fixed parts by using the torso; its fixed part is only the lower body. Therefore, the Hubo

8-DoF has a higher computational amount of collision costs compared to other robots.

Although there is a difference in the amount of calculation depending on the robot configurations, abbre-

viating the robot model to spheres is cost-effective. Accordingly, our method can quickly avoid collisions with

obstacles than other prior methods, resulting in fast convergence.

23

Chapter 3. RCIK: Real-Time Collision-Free Inverse Kinematics using a
Collision-Cost Prediction Network

3.1 Introduction

Remote control of a robotic manipulator has been used to perform tasks on behalf of humans at special-

purpose sites such as nuclear power plants [5] and hospitals during telesurgery [4]. Recent research on the remote

control of robots has been expanding to a diverse set of environments, including the home environment [8]. Due

to this broadening diversity, robots are now expected to handle more difficult challenges when avoiding various

and dynamic obstacles, while also accurately following human commands.

A robotic manipulator is capable of human-like movement given its many joints, but it has various con-

straints, e.g., avoiding collisions with obstacles and kinematic singularities, and maintaining the continuity of

joint configurations. Among the various constraints, collision avoidance from obstacles incurs significant compu-

tational overhead and is one of the most important issues in many prior approaches [12, 15] to achieve real-time

performance when executing human commands.

Recently, TORM [55] reduces the computational overhead required for external static obstacles by applying

the collision avoidance method using the signed distance field (SDF) used in CHOMP [16]. However, the SDF is

hard to deal with dynamic obstacles in real-time due to its long construction time.

Main Contributions. In this work, we present real-time collision-free inverse kinematics (RCIK) using a novel,

collision-cost prediction network (CCPN) to reduce the massive computational overhead associated with colli-

sion avoidance. Our method performs consecutively given six-Degrees-of-Freedom (DoF) commands in environ-

ments, including dynamic obstacles (Figure 3.1). We generate IK candidates with high feasibility based on an

optimization-based IK approach (Sec. 3.4.1). We then check whether generated IK candidates are satisfied with

constraints, collision, joint velocity limits, and kinematic singularities. Among the IK candidates satisfying the

constraints, we select the best configuration through our objective function, consisting of collision avoidance and

the smoothness of joints to support consecutively given commands (Sec. 3.4.2). For handling dynamic obstacles,

our network estimates a collision cost by grasping environment information from an occupancy grid updated from

sensor data in real-time (Sec. 3.4.3).

To evaluate our method, we test three dynamic problems using a real robot, the Fetch manipulator, and

four static problems for three different configurations of robots (Sec. 3.5.1). We observe that our method finds

collision-free joint configurations in real-time in both static and dynamic environments, thanks to our deep neural

network estimating collision costs quickly and accurately. We also analyze our method by comparing over the

SDF (Sec. 3.5.2).

3.2 Related Work

In this section, we discuss prior studies in the areas of inverse kinematics and collision avoidance for manip-

ulation planning.

24

6-DoF
commands

Dynamic
obstacle

(a) We send consecutive 6-DoF commands to a robot, and

a moving cart obstructs the robot.

CCPN

Occupancy
grid

(b) The robot avoids the cart by computing Fcol using our

collision-cost prediction network (CCPN), while follow-

ing consequtively given commmands.

Figure 3.1: These figures show the progress of our method in a dynamic environment. (a) Our method performs

consecutively given 6-DoF commands while avoiding a dynamic obstacle, a cart in this case. (b) To avoid the

cart, we compute a collision cost, Fcol , using our collision-cost prediction network (CCPN). The CCPN uses an

occupancy grid updated through sensor data to reflect changing environments immediately. Finally, our method

finds a desired joint configuration that allows the robot to follow the given command accurately while avoiding

obstacles. Our algorithm conducts all of these operations within 30ms for each command, mainly due to CCPN.

3.2.1 Inverse Kinematics

Traditional inverse kinematics (IK) has been widely studied to determine a joint configuration for a target

end-effector pose quickly and successfully [24]. For example, IKFast [10] and the work of Sinha et al. [25]

analytically solve equations of a complex kinematics chain to reduce the computation time. Additionally, Trac-

IK [11] improves the success rate of the Jacobian-based IK method by restarting from a random joint configuration

and applying sequential quadratic programming instead of the Jacobian. Nevertheless, these methods encounter

difficulty when following a given sequence of end-effector poses, called path-wise IK, because there is no con-

sideration of the continuity on generated joint configurations and constraints (e.g., collisions, joint velocity limits,

and kinematic singularities).

Considering the aforementioned constraints, RelaxedIK [12] solves the path-wise IK by means of weighted-

sum non-linear optimization. Based on RelaxedIK, Stampede [13] synthesizes an optimal trajectory from a dis-

crete graph built in consideration of several constraints. These methods use a neural network for self-collision

avoidance to reduce the computational overhead, but do not consider external obstacles.

To handle external obstacles, Holladay et al. [14, 22] suggest two methods based on optimization-based and

sampling-based motion planning. These works apply the discrete Fréchet distance to approximate the similarity

with a given end-effector path in the Cartesian space. Moreover, TORM [55] improves speed and accuracy by

integrating the Jacobian-based IK method and an optimization-based motion planning approach.

Recently, CollisionIK [15] deals with static and dynamic obstacles in real-time by computing the distance

between robot links and obstacles using the convex hull approach. On the other hand, it does not take into account

difficulties of a real environment, such as sensor noise.

We also propose a real-time approach to solve path-wise IK problems in an environment surrounding static

and dynamic obstacles, but we overcome the difficulties of a real environment using an occupancy grid and a deep

neural network. An occupancy grid is updated in real-time while eliminating sensor noise based on a probabilis-

tic update rule [56], and our deep neural network quickly predicts collision costs by grasping the environment

information from the occupancy grid.

25

3.2.2 Collision Avoidance for Manipulation Planning

A SDF has been used in many manipulation planning methods, especially in relation to optimization-based

approaches [16,55], because the SDF helps to avoid collision efficiently by computing a quantitative collision cost

using the distance information from obstacles. On the other hand, it is difficult to use the SDF in dynamic environ-

ments due to its construction time. Although selective dynamic updating [57, 58] and parallel processing [59, 60]

methods can reduce the construction time, constructing the SDF still incurs high computational overhead, espe-

cially when used to handle dynamic environments in real-time.

For a dynamic environment, several works have used simplified methods, such as approximating obstacles to

spheres [61], using the closest distance from the obstacles [62]. Recently, Kew et al. [63] suggest a neural estimator

for predicting the shortest distance. This estimator serves as a collision detector, improving the performance of a

motion planner. On the other hand, this estimator can be used only within the learned objects because it is learned

by changing only the positions of the objects.

Unlike the work of Kew et al. [63], our deep neural network reflects changing environments immediately

without any restrictions on objects by grasping environment information from an occupancy grid updated through

sensor data in real-time [56]. Moreover, our network is not used as a collision detector and is used to select a

desired joint configuration away from obstacles among generated joint configurations for a target end-effector

pose in our sampling-based approach.

3.3 Overview

In this section, we introduce the problem we aim to solve, followed by giving motivations of our work.

(a) 6-DoF command (b) IK candidates (c) Cost function (d) Execution results

Smoothness between
joint configurations

Collision avoidance
with obstacles

qcur

q

x

command

Qcand

des

tar

Figure 3.2: This shows an overview of our approach. (a) Our method synthesizes a desired joint configuration

qdes that matches the target end-effector pose xtar as a 6-DoF command and has the motion feasibility consider-

ing the current configuration qcur. (b) First, we generate IK candidates Qcand with high feasibility based on an

optimization-based IK approach. (c) With checking constraints, such as collision and joint velocity limits, for

Qcand , we select the best one using our objective function for collision avoidance with obstacles and smoothness

with previous joint configurations. (d) For 6-DoF commands given consecutively, denoted with the yellow arrow,

our method sequentially synthesizes joint configurations that accurately realize the commands while avoiding

collision and achieving smoothness, as indicated by the red arrow.

3.3.1 Problem Definition

Our goal is to develop a collision-free IK solver in real-time for accurately performing consecutively given

6-DoF commands in environments with static and dynamic obstacles. The command is provided as a target end-

effector pose, xtar ⊂R6, and we deal with a redundant manipulator that can have many joint configurations for one

26

end-effector pose xtar; a redundant manipulator generally has a DoF value that exceeds 6. Among many solutions,

we find a desired joint configuration, qdes ⊂RD, where D is the DoF of the robot, considering consecutively given

6-DoF commands and various constraints.

We now describe our assumption for a given command and the criteria of finding qdes. First, we assume that

a command given to a robot from a user is considering the robot specifications, a given time, and an environment.

To perform the command accurately, our method finds qdes that accurately matches xtar. When receiving an invalid

command, e.g., collision due to moving obstacles and out of possible moving range, we stop the robot’s movement

for safety and wait for a valid command.

Next, our problem undertakes collision avoidance in static and dynamic environments and supports the con-

tinuity of synthesized joint configurations for consecutively given commands. To avoid a collision, we find qdes

far away from obstacles among many joint configurations for xtar, since we aim to follow the command exactly.

Lastly, qdes must satisfy various constraints, and we call it having motion feasibility in this chapter. The

requirement of the motion feasibility include the following: the manipulator 1) must not collide with obstacles, 2)

it does not violate the joint velocity limit in order to be able to move from the current configuration, qcur, within

the given time, t, and 3) it does not enter kinematic singularities, which occur when the Jacobian matrix loses the

full rank.

In summary, we target to solve real-time inverse kinematics for consecutively given 6-DoF commands, while

satisfying the requirement of motion feasibility in both static and dynamic environments.

3.3.2 Motivation

A real-time approach has to compute the desired solution during a given short time t, i.e., 30ms in our

problem. Therefore, reducing the computational overhead is a critical issue for our problem. As explained in

Sec. 3.2.1, many works have proposed methods to reduce the computational overhead of obstacle avoidance,

which takes up a lot of computation. Among them, TORM [55] uses the signed distance field (SDF) to reduce

the computational overhead for collision avoidance. TORM improves the trajectory optimization performance by

quickly synthesizing an initial trajectory using IK samples generated by the traditional IK method.

Inspired by TORM, our method generates IK candidates, Qcand = {q1
cand ,q

2
cand , ...}, for xtar based on an

optimization-based IK, one of the traditional-IK methods, and then selects the best qdes that has the motion feasi-

bility and minimizes our objective function (Figure 3.2). To follow consecutive commands, our objective function

considers collision avoidance of obstacles and the continuity of joint configurations.

Due to selecting one of generated IK candidates, increasing the possibility of having the motion feasibility of

IK candidates is an important factor for improving the success rate of our approach. To obtain such IK candidates,

especially satisfying the joint velocity limits, we utilize an optimization-based IK approach that has the property

of obtaining a solution depending on the initial configuration [64, 65]. By maneuvering the initial configuration

close to qcur, we can generate IK candidates that have the potential to satisfy the joint velocity limits given the

short time t.

The SDF can reduce the computational overhead of collision avoidance by calculating the distance infor-

mation between obstacles in advance. The SDF also makes it possible to compute a quantitative cost, Fcol , for

collisions with obstacles. Despite these advantages, it is difficult to apply the SDF to dynamic environments due

to its long construction time. To overcome this problem, we predict Fcol using a deep neural network without con-

structing the SDF. Our network uses an occupancy grid updated from sensor data as the input to reflect changing

environments in real-time. Fcol is used to select an IK candidate far away from obstacles among generated IK

candidates.

27

3.4 Real-time Collision-free Inverse Kinematics

Figure 3.2 shows the system flow. In this section, we explain how the proposed method generates IK candi-

dates based on an optimization-based IK and how it assesses the motion feasibility. We then introduce the method

that selects the best candidate from among all IK candidates using our objective functions, considering collision

avoidance with obstacles and the continuity of joint configurations. We also propose a collision-cost prediction

network (CCPN) for avoiding dynamic obstacles.

3.4.1 IK candidates

While a redundant manipulator has various joint configurations for a target end-effector pose xtar, joint config-

urations with the motion feasibility are limited. In particular, considering the given short time and velocity limits

of joints, the possible moving range of joints from the current joint configuration qcur is very narrow. Finding

many IK candidates within possible moving range in a short given amount of time can increase the performance

of our approach. To generate IK candidates Qcand within the most likely joint bounds, we use an optimization-

based IK approach and set its initial configuration, qopt−IK
init , to randomly generated configurations using a Gaussian

distribution (Figure 3.2(b)); we use the Jacobian-based IK solver.

An optimization-based IK method starts with the initial configuration qopt−IK
init and finds a joint configuration

q for xtar by iteratively minimizing the error with xtar in a Cartesian space. By repeatedly minimizing the error, it

finds q that is close to the initial configuration qopt−IK
init [64–66]. Also, different initial configurations can generate

diverse solutions for a redundant manipulator [65, 66].

Inspired these properties, we create an initial configuration of optimization-based IK qopt−IK
init by modifying

qcur using the multivariate Gaussian distribution, N:

qopt−IK
init ∼ N(qcur,diag(σ2

1 ,σ
2
2 , ...,σ

2
D)), (3.1)

where diag(·) is a diagonal, covariance matrix of size D and σi is the standard deviation for considering the

properties of the i-th joint. diag(·) controls how closely IK candidates are generated from the current configuration

qcur. Specifically, σi of diag(·) is determined by µ× vi, where vi is the maximum velocity of the i-th joint and µ

is a constant that serves to adjust the closeness of IK candidates from qcur. When µ is too small, it is difficult to

obtain diverse Qcand , whereas it is difficult to obtain Qcand satisfying the joint velocity limits when µ is too large;

thus, we experimentally found µ = 0.1 to strike the balance between diversity and generating many feasible Qcand .

In addition, we consider v because the maximum velocity of each joint v = {v1,v2, ...,vD} can differ.

There is no guarantee that Qcand generated by the aforementioned process have the motion feasibility. We thus

check the constraints for collision, joint velocity limits, and kinematic singularities. Note that we delay collision

checking until after we calculate our cost function to reduce the computational overhead of collision detection; we

use FCL [67], a commonly used collision checker. The joint velocity limit checks whether the manipulator can

move from qcur to the generated Qcand during the given time t. In the case of kinematic singularities, we use the

lower bound of the manipulability [54] obtained from random configurations, as is used by RelaxedIK [12]. In

short, we check Qcand where the manipulability value is greater than the lower bound.

When checking the constraints for Qcand , there can be no feasible solution due to invalid command or insuffi-

cient Qcand caused by the short time constraints and the randomness of our generation method. In those cases, we

stop the robot’s movement by following prior methods of handling dynamic obstacles [18,68]. Since no algorithm

guarantees success in the problem of dealing with unknown dynamic obstacles in real-time, the prior methods have

decided to stop the robot’s movement for robot safety [18, 68]. Furthermore, our problem deals with an unknown

28

B

(a) Simplification of robot links. (b) Signed distance field for external obstacles.

Figure 3.3: These figures show (a) the simplified robot links, spheres B, used for manipulation and (b) signed

distance field for external obstacles, the table and gray box. The color of cells represents the distance from the

closest obstacles; as the distance from a cell to the obstacle becomes smaller, its color gets closer to the red, and

vice-versa to blue.

future command from a user. To increase the likelihood of success against unknown commands and obstacles in

the future, we select a joint configuration away from obstacles among Qcand through our objective function.

3.4.2 Objective Function

For one target end-effector pose xtar, we can use all of Qcand with the motion feasibility. However, to execute

consecutive commands, it is necessary to consider the continuity between joint configurations and collision avoid-

ance with obstacles. Because a collision can occur from an unknown future command and obstacles, we focus

on selecting a joint configuration that is far away from obstacles among generated Qcand . In this work, we select

the configuration with the smallest value among Qcand with the motion feasibility using the objective function, U ,

which numerically expresses the aforementioned properties.

We model the objective function U to have two cost terms for collision avoidance with obstacles, Fcol , and

smoothness between joint configurations, Fsmooth:

U = Fsmooth +wcolFcol , (3.2)

where wcol is the weight for Fcol in our objective function; we empirically set wcol to 2.0.

Fcol represents a quantitative collision cost determined by calculating the approximate distance between robot

links and obstacles. We first introduce a method of computing Fcol using the SDF and then explain our deep neural

network for efficiently avoiding dynamic obstacles (Sec. 3.4.3).

The SDF can significantly reduce the computational overhead during the planning stage by calculating the

distance information for static obstacles in advance. Thus, many works [16, 55] use the SDF to improve the

performance of their optimization-based planners. For the effective use of the SDF, we simplify the robot links

used for manipulation into spheres, B = {b1,b2, ...,bn} (Figure 3.3). Through this method, we can calculate an

approximate distance, d̃i, from the nearest obstacles to the i-th sphere bi, simply as SDF(pbi)−rbi , where pbi ⊂R3

and rbi are correspondingly the center position and radius of bi, and SDF(pbi) returns the SDF value at pbi .

Unlike most existing optimization-based methods that calculate a cost considering continuity between joint

configurations [16,55], we compute Fcol only for a joint configuration q because the desired joint configuration qdes

29

is very close to the current configuration qcur to satisfy the joint velocity limits given the short time t. Therefore,

Fcol using the SDF is represented as:

Fcol =
|B|

∑
b

max
(

ε− (SDF(P(q,b))− rb) ,0
)
, (3.3)

where P(q,b) is the partial forward kinematics that computes the position of a sphere b∈ B at a joint configuration

q, and ε is the clearance value to make zero when the distance from the obstacle is far enough; (SDF(·)< ε), and

we set ε to 1.0m. In short, Fcol increases as the distance between obstacles and robot links decreases.

Fsmooth in Eq. 3.2 serves to synthesize smooth joint configurations for consecutive commands. We consider

the joint velocity and acceleration from the past three configurations. Fsmooth is formulated via:

Fsmooth = ‖qi−qi−1‖2 +‖q̇i− q̇i−1‖2 . (3.4)

3.4.3 Collision-Cost Prediction Network

Although the SDF helps to accelerate the calculation of a collision cost Fcol , it is difficult to use in dynamic

environments due to its long construction time, e.g., 61ms for a 0.025m resolution. Furthermore, as the resolution

of the SDF increases, longer construction times become necessary. Unfortunately, our approach needs a high-

resolution of the SDF to accurately differentiate Fcol of the IK candidates Qcand , which are located very close to

each other to satisfy the joint velocity limits given the short time t.

For a real-time approach in dynamic environments, we present a collision-cost prediction network (CCPN)

that estimates Fcol of Qcand directly without constructing a SDF. We set the ground-truth data to collision costs

computed from Eq. 3.3 using the SDF with a high-resolution of 0.005m. Although the high-resolution SDF

requires a long construction time and large amount of memory, it can provide very accurate distance information

from obstacles. In addition, our CCPN serves to select a joint configuration far away from obstacles among Qcand ,

and thus it learns to predict not only the value of Fcol but also the ranking order for Fcol of Qcand .

Joint configurations

Occupancy grid

Joint configuration

Obstacle

Regression

feature extractor

feature extractor

Qcand

module

Fcol

Figure 3.4: This figure shows the collision-cost prediction network (CCPN), which consists of two feature

extractors and one regression module.

Network architecture The CCPN aims to estimate collision costs close to computation by Eq. 3.3. As explained

in Sec. 3.4.2, Eq. 3.3 is computed from the distance information of the obstacles in the SDF and the positions of

the target robot links, as simplified links B according to a joint configuration q. We design the architecture of the

CCPN by reflecting such information of Eq. 3.3.

30

(a) Randomly distributed obstacles. (b) Occupancy grid.

Figure 3.5: These figures show one of the generated environments to obtain training data. From (a) randomly

distributed obstacles, we construct (b) an occupancy grid with updates from sensor data.

As shown in Figure 3.4, the CCPN extracts deep features from a joint configuration and an occupancy grid,

and the regression module predicts Fcol by concatenating the extracted two features. Although the CCPN has a

simple architecture consisting of two feature extractors and one regression module, it is suitable for our real-time

approach; it takes 2.3 ms to compute collision costs of 50 IK candidates.

At a high level, the regression module is designed to behave using an approach similar to that in Eq. 3.3 by

predicting collision costs from the concatenated feature out of two features; the joint configuration feature, fq,

and the obstacle feature, fobs. fq has position information pertaining to the robot links, and fobs contains obstacle

information from an occupancy grid in the role of the SDF.

An occupancy grid includes information about obstacles and is updated from sensor data, while remov-

ing sensor noise based on the probabilistic update rule [56]. For real-time update, we set the resolution of the

occupancy grid to 0.05m and the size of the occupancy grid is 40× 40× 40. Our network extracts fobs from

the occupancy grid of 0.05m, and fobs serves as the high-resolution SDF. Similarly, some super-resolution and

shape representation methods using a deep neural network have produced high-resolution results even with low-

resolution inputs [69, 70].

In the detailed structure of the CCPN, the feature extractor of the joint configuration has six one-dimensional

(D) convolution layers and two linear layers. The feature extractor of the environment has a structure identical

to that of the feature extractor of the joint configuration, except it has 3-D convolution layers instead of 1-D

convolution layers. In addition, the regression module is a multi-layer perceptron with six hidden layers. We

leverage batch normalization and a ReLU activation function between all layers in the CCPN.

Loss functions Prediction results from the CCPN are used to select one of Qcand in conjunction with Fsmooth.

Therefore, it is important for the predicted values and, more importantly, the predicted ranking among Qcand , to

close to those of the ground-truth data. We use the mean squared error (MSE) loss, LMSE , to match the ground-truth

data, and the ranking loss, Lrank, to select one of Qcand far away from obstacles:

loss = LMSE +wrankLrank, (3.5)

where wrank is the weight for Lrank in our loss function.

Some deep learning approaches [71,72] have shown that considering the ranking order of the data is effective

when selecting the desired data. Inspired by these approaches, we also aim to preserve the ranking order of two

different estimations for our method to select the best joint configuration among the IK candidates Qcand .

31

Dynamic
obstacle

6-DoF
commands

(a) Circle tracing

Dynamic
obstacle

6-DoF
commands

Static obstacle

(b) Square tracing

Figure 3.6: These figures show our experiment in the dynamic environments using a real robot, the Fetch

manipulator. The robot receives 6-DoF commands consecutively to trace (a) circle and (b) square, while avoiding

an incoming book in the direction of the green arrow. Additionally, (b) includes a static obstacle, a table. Note

that we give 6-DoF commands consecutively to follow the yellow line.

Lrank is measured by comparing a data pair, and we make pairs by dividing a subset of the training data

used in one training iteration, as mini-batch data, in half. For this type of data pair, Lrank computes the difference

between two prediction values, ŷ1 and ŷ2, as to whether their ranking order is incorrect. Otherwise, Lrank is 0.

Specifically, Lrank is formulated as:

Lrank = max(Γ(y1,y2)× (ŷ1− ŷ2),0),

s.t. Γ(y1,y2) =

1, y1 < y2,

−1, otherwise,

(3.6)

where y1 and y2 are the ground-truth values for ŷ1 and ŷ2, respectively.

Training dataset To train the CCPN, we construct datasets that consist of 500 random joint configurations in

2000 different environments for one million data instances in total. Some prior learning-based motion planning

methods [73, 74] constructed datasets from randomly generated obstacles to cover a diverse set of environments.

By adopting this protocol, we construct the environments by randomly positioning obstacles with arbitrary sizes

(Figure 3.5). From each environment, we extract occupancy grids and Fcol of the joint configurations as the

ground-truth data through using Eq. 3.3 with the high resolution of SDF; the SDF is built from the extracted

occupancy grid, same as the network input information.

The CCPN is trained using the Adam optimizer with an initial learning rate of 5×10−5 and set the mini-batch

size to 128. The training process takes 100 epochs, and the learning rate is decayed to 5×10−6 at 50 epoch.

3.5 Experiments And Analysis

In this section, we introduce our experiment setting and discuss the experimental results. Various experiments

are tested on a machine that has a 3.60GHz Intel i7-9700K CPU, 32GB of RAM, and a RTX 2080 Ti graphics

card.

32

Table 3.1: Construction times of the SDF with varying resolutions and computation time of collision costs for 50

IK candidates using the SDF and the CCPN.

Fetch 7-DoF SDF CCPN

Resolution (m) 0.005 0.025 0.05 -

Construction time (ms) 8400 61 7 0

Computation time (ms) 17.5 6.0 4.5 2.3

3.5.1 Experiments in dynamic environments

In dynamic environments, we tested our method using a real robot, the Fetch manipulator; for sensing dy-

namic obstacles, we used the 3-D RGB-D camera mounted on the robot head. To test the usability of the proposed

method, CCPN, we also compare its results against using a SDF. A SDF cannot be used directly in a dynamic

environment, especially when the construction time is longer than the given time, 30ms. We therefore test the

SDF with a resolution of 0.05m, which has a low construction time, 7ms (Table 3.1). In addition, we test two types

of CCPNs learned with and without Lrank.

We prepare three dynamic problems with different obstacles and 6-DoF commands. The first problem is to

carry out the command in the form of a straight line transmitted using the joystick, while avoiding an incoming

cart (Figure 3.1). Next, the second and third problems consecutively give 6-DoF commands to trace a circle and

a square, while avoiding an approaching book (Figure 3.6). The third problem also involves a table as a static

obstacle. The 6-DoF commands for three problems are provided consecutively, and our method progressively

computes a joint configuration for each single command; our method does not know the future commands. In

addition, since these dynamic problems are designed to evaluate the proposed method, the dynamic obstacle

deliberately approaches the robot.

To determine the obstacles, we update the occupancy grid from sensor data in real-time [56]. As implemen-

tation details, we filter out sensor data corresponding to the manipulator, the spheres B shown in Figure 3.3a, as

those data are not part of the environment. For the real-time update of the occupancy grid, including the filtering

process, we used the occupancy grid with a resolution of 0.05m; its update time is 30ms on average. The updated

occupancy grid is used to check the collision with obstacles and as input to our CCPN for grasping the environ-

ment information; in the case of static obstacles, we can use prior obstacle information when precise collision

checking is required, e.g., narrow passage. It should be noted self-collision detection is performed with the robot

geometry information.

In addition, conducting experiments in real dynamic environments always involves different speeds of dy-

namic obstacles and timings of the human commands, which is inappropriate for fairly testing different methods.

For a fair evaluation of different methods, we use a recorded data consisting of sensor data and consecutive com-

mands obtained from a real experiment. Concretely, we prepare 20 different recorded data for each problem

through real experiments; the 20 recorded data have slightly different speeds of dynamic obstacles and timings of

the commands.

From the recorded data, we evaluate whether the computed joint configurations accurately match the given

end-effector poses, while achieving the motion feasibility in dynamic problems. We measure the position and

orientation error by adding one more between a current and a given end-effector pose for precise computation,

since our target robot, a redundant manipulator, has multiple joint configurations for a target end-effector pose.

We also regard failure when we do not find a joint configuration with the motion feasibility for each problem; in

33

Table 3.2: Results with 20 experiments with different methods in dynamic environments.

Fetch 7-DoF
Straight (Figure 3.1) Circle (Figure 3.6a) Square (Figure 3.6b)

PE OE NF PE OE NF PE OE NF

SDF (0.05m res.) 5.5e-5 1.0e-4 12 - - 20 4.3e-5 7.1e-5 15

CCPN (wrank = 0) 5.6e-5 9.5e-5 7 5.0e-5 7.8e-5 9 1.8e-4 1.1e-4 6

CCPN (wrank = 10) 6.3e-5 1.1e-4 3 5.3e-5 8.4e-5 1 6.6e-5 1.0e-4 2

PE: Position error (m). OE: Orientation error (rad). NF: Number of failures.

this case, we stop the movement of the robot.

Table 3.2 shows the results in dynamic environments with different methods using a 0.05m resolution of

SDF and two types of CCPNs trained by only LMSE and by LMSE and Lrank together. Using a 0.05m resolution of

the SDF, which satisfies the real-time performance requirement, shows the highest number of failures among the

tested methods, as its resolution cannot accurately distinguish Fcol of nearly located Qcand . Moreover, the CCPN

learned w/ Lrank shows fewer failures than the CCPN w/o Lrank due to being learned to distinguish Fcol of Qcand .

When measuring the position and orientation errors for the success cases, all methods show reasonably low

errors. This is because all methods generate Qcand through our generation method, and generated Qcand have fairly

low errors for xtar to follow a given command.

In conclusion, our proposed method performs consecutively given commands in real-time while avoiding

dynamic and static obstacles effectively. A quantitative analysis of the proposed method will be discussed in the

next sub-section.

3.5.2 Analysis

To analyze our proposed method, we construct validation sets using three different configurations of robots,

Kuka iiwa with 7-DoF, and the Fetch manipulator with 7 and 8 DoF. We also evaluate the performance of the

CCPN with varying values of wrank and the SDF with different resolutions.

To evaluate our proposed method in various environments, we prepare 200 environments with randomly

distributed obstacles as shown in Figure 3.5a. Each environment has ten random end-effector poses, and we

obtain 50 IK candidates for one end-effector pose. The reason we use 50 IK candidates as a standard is that

our approach generates about 125 IK candidates on average for a given 30ms, and about 50 of them satisfy the

constraints except for collision. We ensure that the 50 candidates have different collision costs so as to evaluate

whether the predicted collision costs have the correct ranking; we compute the collision costs at a resolution of

0.005m of SDF to achieve high accuracy. Furthermore, the 50 IK candidates are located within a very narrow joint

boundaries considering the joint velocity limit and given short time.

From the validation sets, we compute Fcol for the different tested methods. We evaluate how well estimated

Fcol of 50 IK candidates have similar ranking orders among them compared to the corresponding ground-truth

values. To measure the similarity, we measure the ranking orders of the predicted outcomes and do the same

procedure for the ground-truth values, after which we compute the L1 distance between them. In this work, we

refer to this metric as the “ranking error”. Intuitively, the low ranking error implies that it is highly possible to

select an IK candidate far away from obstacles among various IK candidates.

Table 3.3 shows the ranking error of different SDFs and CCPNs with varying configurations of the robots.

Overall, the 0.05m resolution of the SDF has the highest ranking error. We also measure how unique the values

34

Table 3.3: Results of using the SDF with varying resolutions and the CCPN trained by varying wrank in the

validation dataset. The number of unique data indicates the number of different collision costs among 50 IK

candidates.

SDF w/ varying resolutions CCPN w/ varying wrank

0.025m 0.05m 0 10 20

Kuka Ranking error 7.9 12.6 5.9 5.8 5.8
7-DoF # of unique data 13 6 50
Fetch Ranking error 7.5 11.1 7.0 6.6 6.9

7-DoF # of unique data 20 16 50
Fetch Ranking error 8.0 9.1 8.0 7.6 7.7

8-DoF # of unique data 44 43 50

Table 3.4: Results of different methods with varying configurations of robots in static environments. RelaxedIK

only considers self-collision, and thus is tested in two non-obstacle scenes.

Square tracing “S” tracing Rotation task Writing “hello”

PE OE PE OE PE OE PE OE

Kuka RelaxedIK - - - - 5.4e-2 2.9e-1 3.9e-2 1.6e-2

7-DoF Ours 4.8e-5 3.6e-4 3.5e-5 6.3e-5 3.0e-5 2.8e-4 3.2e-5 7.3e-5

Fetch RelaxedIK - - - - 5.6e-2 9.9e-2 4.6e-2 2.4e-2

7-DoF Ours 4.0e-5 6.9e-5 5.0e-5 7.2e-5 6.4e-5 1.7e-4 6.3e-5 1.3e-4

Fetch RelaxedIK - - - - 4.1e-2 9.5e-2 3.8e-2 1.7e-2

8-DoF Ours 5.4e-5 8.9e-5 6.3e-5 6.6e-5 6.1e-5 1.6e-4 7.3e-5 1.1e-4

PE: Position error (m). OE: Orientation error (rad).

for the SDF and CCPN are. The tested SDF has many more duplicate values over the tested CCPN. Although the

accuracy of the SDF can be improved as we increase the resolution, its construction time increases exponentially

(Table 3.1), becoming inappropriate for our real-time purpose.

On the other hand, the CCPN does not require construction time at runtime and has fewer ranking errors than

the SDF with resolutions of 0.05m and even 0.025m. Furthermore, the CCPN computes collision costs of 50 IK

candidates nearly twice as fast compared to the use of tested SDF with the 0.05m resolution (Table 3.1). Owing

to such performances, our method achieved an average of 90% success rate for three dynamic problems. These

results indicate that the CCPN has computational advantages for our real-time approach in dynamic environments

and selects a joint configuration away from obstacles among Qcand .

In addition, the CCPN which underwent learning through LMSE and Lrank shows smaller ranking errors (Ta-

ble 3.3) and higher success rates in dynamic environments than the CCPN trained by only LMSE (Table 3.2). In

particular, the greatest difference was found in the circle problem, as shown in the middle column of Table 3.2.

This improvement stems from the fact that Lrank reduces the ranking error of the CCPN, allowing a better IK

candidate to be selected.

Lastly, we test our method for three different configurations of robots in four static problems, which were

used in earlier work [55]. Table 3.4 shows the results of different methods with varying configurations of robots in

the four tested static problems. We compare our method with RelaxedIK in open-space environments where only

35

self-collisions matter. Note that RelaxedIK does not consider external obstacles. In two problems without external

obstacles, our method shows higher accuracy than RelaxedIK. Our method also successfully solved two problems

with external obstacles. These results indicate that the proposed approach can find the desired joint configuration

qdes that exactly matches the target end-effector pose xtar for the given short time (30ms) while ensuring motion

feasibility.

36

Chapter 4. Towards Safe Remote Manipulation: User Command
Adjustment based on Risk Prediction for Dynamic Obstacles

4.1 Introduction

Real-time remote manipulation has been primarily used in special sites (e.g., medical facilities or nuclear

power plants) that require sophisticated or hazardous work [4,5]. Recent studies [6,7,9] have expanded the scope

of remote manipulation to environments around us, such as convenience stores (e.g., Telexistence1) and homes.

In environments around us, there are various obstacles, both static and dynamic, and avoiding such obstacles is a

critical issue for safe remote manipulation.

Recent proposed inverse kinematics (IK) methods for real-time remote manipulation, e.g., CollisionIK [15]

and RCIK [1], handle static and dynamic obstacles to find collision-free joint configurations from consecutively

given user’s commands. These IK approaches have the characteristic of following a user’s command, and thus the

user’s judgment on giving proper commands also plays a big role in obstacle avoidance. However, a user makes

judgments by observing a restricted environment through a camera, and thus there is a possibility that the user

may encounter unexpected situations for giving commands in remote manipulation (Figure 4.1).

In the case of static obstacles, we can keep the safety by naı̈vely stopping a robot, even if the user’s command

has a possibility of causing a collision. However, it is difficult to guarantee the safety against dynamic obstacles

with uncertain motion [18, 19]. To increase the probability of avoiding dynamic obstacles, it is necessary to

identify the danger of dynamic obstacles in advance and take action to avoid them. For safe remote manipulation,

we aim to adjust user’s commands to avoid obstacles according to the risk of dynamic obstacles. Conversely, when

there is no risk of dynamic obstacles, a robot follows the user’s command so as not to interfere with the user’s

desired tasks, e.g., picking an object on a table.

Main contributions. In this work, we present a risk-aware user command adjustment method to adjust risky

commands that can cause collisions with dynamic obstacles due to a user’s unpredictability or carelessness (Fig-

ure 4.1). We suggest a risk prediction network (RPN) and an obstacle avoidance command network (OACN) to

minimize the delay of remote operation and to handle sensor noise, which is the difficulty of a real environment.

Using two networks, our method predicts the risk of dynamic obstacles and then adjusts a user command to avoid

obstacles depending on the predicted risk.

We model the risk of dynamic obstacles utilizing the proximity between robot links and dynamic obstacles,

and the RPN learns the modeled risk values with consecutive robot state and obstacle information (Sec. 4.4.3); we

use occupancy grids updated from sensor data in real-time to grasp obstacle information. Based on the predicted

risk from the RPN, our method decides an adjusted command between a user command and the output of the

OACN. We train the OACN via reinforcement learning so that the final adjusted command avoids obstacles when

the predicted risk is high, otherwise, we follow the user’s commands (Sec. 4.4.2).

We evaluate our proposed method in environments including dynamic obstacles varying velocities and envi-

ronments including only static obstacles (Sec. 4.5.1). We show that our method improves the safeness in dynamic

environments where a collision occurs when naı̈vely following given commands. We also show that our RPN

robustly handles sensor noise by predicting the risk of dynamic obstacles close to zero in static environments.

Lastly, our method shows a fast computation time of 3ms, and we verify the feasibility of our method in real

1https://tx-inc.com

37

https://tx-inc.com

Static
obstacles

User
command

Person

Adjusted
command

Predicted risk:

Moving
direction

Water
bottle

Figure 4.1: This shows the visualization of the user monitor screen for remote manipulation. In the visualized

situation, the user gives commands (red arrow) to the robot to move a water bottle (orange boxes) from the dotted

magenta box to the direction of the magenta arrow, and a person suddenly appears in the camera’s field of view

(blue arrow). Our method predicts high risk of collision, which is expressed between 0 and 1, and for safe remote

manipulation, it adjusts the user’s command accordingly to move the robot away from the obstacle (green arrow).

The cells of the occupancy grid are colored according to the z-axis value.

environments (Sec. 4.5.2).

4.2 Related Work

In this section, we introduce inverse kinematics methods related to remote manipulation and motion planning

approaches for dynamic obstacle avoidance.

4.2.1 Inverse kinematics for remote manipulation

In remote manipulation, a user can easily control a manipulator by giving a command to the manipulator’s

end-effector in the Cartesian space. Accordingly, inverse kinematics (IK) techniques have been widely used

in remote manipulation to compute a joint configuration for the user command [13, 14, 75]. Conventional IK

approaches (e.g., IKfast [10] and Trac-IK [11]) focus on finding a joint configuration that matches the given end-

effector pose. However, to synthesize feasible joint configurations for consecutively given user commands, it is

necessary to consider several constraints, such as collision, continuity of joints, and kinematic singularity [1].

RelaxedIK [12] handles several constraints using an optimization-based technique and uses a neural network

for real-time remote manipulation to quickly avoid self-collision. Extending RelaxedIK, CollisionIK [15] avoids

static and dynamic obstacles by adding a collision avoidance term that quickly computes the shortest distance

between convexified robot links and obstacles using the QuickHull algorithm. However, this method has difficulty

coping with sensor noise in a real environment.

RCIK [1] also handles static and dynamic obstacles, while overcoming the difficulty of a real environment by

utilizing deep learning with an occupancy grid via real-time updates based on probability [56]. In addition, RCIK

accurately follows given commands through a sampling-based IK approach. Although the high accuracy is one

38

of the important factors in remote manipulation, it requires a user’s proper and fast judgment to avoid collisions

of robot links, especially related to the end-effector. Since users cannot always make perfect decisions in a timely

manner due to carelessness or unforeseen circumstances, we aim to adjust user commands to reduce the risk of

collision for safe remote manipulation.

4.2.2 Dynamic obstacle avoidance

Motion uncertainty of dynamic obstacles threatens safe robot movement and makes it difficult to plan a

collision-free robot motion for reaching a target position [76]. Classical motion planning approaches [18, 77–79]

handling dynamic obstacles perform iterative replanning in a short time considering the sensing cycle. To over-

come the short replanning time, Vannoy et al. [18] suggest a method that generates multiple initial trajectories

to a target configuration and then iteratively updates the trajectories. Hauser et al. [77] present an adaptive time-

stepping approach for replanning, considering responsiveness, safety, and completeness of planning results. In

addition, Park et al. [78] present GPU-based parallel processing to accelerate optimization-based replanning. Re-

cently, learning-based approaches [80–82] have been studied to quickly replan a trajectory for reaching a target

position using a fast inference time of a neural network.

As another way, online adaption methods [83–86] avoid dynamic obstacles by adaptively modifying a given

trajectory using a dynamic potential field. Furthermore, several works [19, 87] construct a learning-based safety

layer that iteratively checks collisions on a planned trajectory and modifies the collision part of the trajectory to

be safe.

These methods consider avoiding dynamic obstacles but use special equipment (e.g., marker or motion cap-

ture system) or object detection to figure out dynamic obstacles in a real environment with static and dynamic

obstacles. This is because real sensor data for static obstacles is not constant due to sensor noise. Also, it is

time-consuming to figure out the position and velocity of dynamic obstacles. Our method uses consecutive sensor

data without special equipment and predicts the risk of dynamic obstacles while handling sensor noise. According

to the predicted risk, our method determines the final command between the user’s command and a command to

avoid obstacles.

4.3 Background

4.3.1 Problem definition

Our goal is to perform safe remote manipulation in environments including static and dynamic obstacles. In

this work, we deal with real-time remote manipulation in which a user consecutively gives a command, ∆xu ∈R6,

to the end-effector in the Cartesian space. ∆x indicates the amount of movement for the end-effector, and a target

end-effector pose, xu, from a user command is calculated by adding a current end-effector pose, xcur, and ∆xu;

xu = xcur +∆xu. For xu, a real-time IK solver, such as RCIK [1], synthesizes a joint configuration, qu, considering

various constraints, e.g., continuity of joints, collision avoidance, and kinematic singularity. In this work, we

mainly consider a redundant manipulator with multiple joint configurations for one end-effector pose; a redundant

manipulator has greater than six degrees of freedom (DoF).

In real-time remote manipulation, a user’s decision-making greatly affects the process of avoiding obstacles

since a robot is designed to follow the user command ∆xu. In the case of static obstacles, we can maintain the safety

from collisions by naı̈vely stopping a robot, since we can check whether joint configuration for xu is collision or

not [1]. On the other hand, it is more difficult to avoid collision with dynamic obstacles that have even uncertain

movement. Unfortunately, a user may give commands that lead to collisions due to the user’s unfamiliar control

39

User command

Risk Prediction Network
(RPN)

Obstacle Avoidance Command
Network (OACN)

Joint positions

Occupancy grid

+ aAdjusted command ()

IK solver

xa
a

Δx

q

a

Δx
Δx Δxu π

Δxπ

Δxu

Figure 4.2: This shows the overall system flow of our approach.

skills or unexpected situations. Therefore, there is a strong demand to protect a robot from risky commands that

can cause collision with dynamic obstacles.

In this work, our problem is to cope with the danger of dynamic obstacles where adjusting the user command

is essential. To solve our problem, we have to figure out the risk of dynamic obstacles in advance, and adjust the

user’s commands to avoid obstacles considering the risk of dynamic obstacles. When no risk of dynamic obstacles

is expected, we simply follow user command.

In addition, we handle the noise problem of real sensor data to apply our method on a real environment and

aim to solve our problem as quickly as possible to reduce the delay of real-time remote manipulation; in real-time

IK solvers [1, 12, 15], the time interval, ∆t, between commands is within 30ms according to the sensing cycle.

4.3.2 Reinforcement Learning

We use reinforcement learning to solve our problem by formulating our problem as Markov decision process

(MDP) defined by a tuple: (S,A,P,R,γ), where S, A, P, R, and γ ∈ [0,1) are the state space, the action space,

a transition function, a reward function, and a discount factor, respectively [88]; more details can be found in

Sec. 4.4.2. We find an optimal policy, π∗ : S→ A, that maximizes a discounted cumulative reward, G, via the

soft actor-critic (SAC) [89] framework. G is denoted as ∑
T
t=0 γ tE[R(st ,at)+αH(π(·|st))], where st and at are the

subset of S and A, respectively, at each time step t ∈ [0,T], and α and H are regulation coefficients for controlling

the stochasticity of π and the entropy of π , respectively.

4.4 Approach

In this section, we give an overview of our method and then describe our approach in detail.

4.4.1 Overview

To solve our problem, we present a risk-aware user command adjustment method using deep learning. We

adopt a learning-based approach to quickly adjust a risky user command for dynamic obstacles and cope with

sensor noise. Figure 4.2 shows our system flow. Our method consists of two kinds of networks: risk prediction

network (RPN) and obstacle avoidance command network (OACN).

40

Predicted risk

FC
64

FC
128

FC
128

Encoder

FC
128

FC
256

FC
256

Action
6

Action
6

FC
64

FC
1

Q-value
1

Mean
6

Std
6

Both
Actor
Critic

FC
32

zenv

xq

Δxu

pos

User command

Joint
positions

Occupancy
grid

Figure 4.3: This shows the structure of obstacle avoidance command network (OACN). The encoder is a 3-D

convolutional network following the obstacle feature extractor of RCIK [1].

The RPN predicts the risk of dynamic obstacles, ρ̂ ∈ [0,1], in environments including static obstacles (Sec. 4.4.3).

To identify the risk of dynamic obstacles, the RPN uses consecutive robot state information and occupancy grids

updated in real-time from sensor data. According to the predicted risk ρ̂ , our method decides an adjusted com-

mand, ∆xa, between the user command ∆xu and a command, ∆xπ , generated by OACN:

∆xa = (1− ρ̂)∆xu + ρ̂∆xπ . (4.1)

The OACN is learned via reinforcement learning to find an optimal ∆xπ considering the predicted risk, the user

command ∆xu, current robot state, and obstacle information (Sec. 4.4.2); note that an optimal ∆xπ is computed in

a way that ∆xa gets the maximum reward. Finally, to find a joint configuration, we give the adjusted command

∆xa to a real-time IK solver considering collision avoidance; specifically, we use RCIK [1].

4.4.2 User command adjustment

We decide an adjusted command ∆xa by combining a user command ∆xu and a command ∆xπ generated by

the OACN according to the predicted risk ρ̂ (Eq. 4.1). We learn the OACN through reinforcement learning so that

∆xa avoids obstacles at high ρ̂ and follows a user’s command at low ρ̂ . To achieve the desired ∆xa, we introduce

our MDP setup based on ρ̂ .

We learn our policy π , as the OACN, to maximize a discounted cumulative reward G for ∆xa. Our policy π

generates at ∈ R6 from the current state st (Figure 4.3), and we synthesize ∆xπ from at :

∆xπ = diag(λλλ pos,λλλ ori)at , (4.2)

where each element of at has a value between −1 to 1, and diag(λλλ pos,λλλ ori) is a diagonal matrix to control

the amount of movement of the end-effector during the short ∆t; we set λλλ pos and λλλ ori to [0.01,0.01,0.01] and

[0.05,0.05,0.05], respectively.

We define st as a tuple: (ρ̂,∆xu,x
pos
q ,zenv), where xpos

q ∈ Rd×3 is the 3-dimensional (D) position for d joints,

and zenv is an obstacle feature compressed from an occupancy grid, O. We extract zenv from a pre-trained encoder,

which is part of the variational autoencoder (VAE) [90].

Risk-based reward function. We introduce our reward function based on the predicted risk ρ̂ to synthesize the

desired ∆xa. We define the reward function so that when ρ̂ is high, ∆xa moves away from obstacles, and when ρ̂

41

xq
pos

FC
128

GRU
128

GRU
256

FC
256

FC
128

FC
128

Conv
(32, 5, 2)

Conv
(32, 3, 2)

FC
256

AvgPool(2)

Joint positionsOccupancy grid
difference

1 -1

Moving
direction

ΔO

Figure 4.4: This shows our risk prediction network (RPN) for dynamic obstacles. The RPN recurrently takes joint

positions xpos
q and an occupancy grid difference ∆O. We apply VoxNet [2] to extract the feature of an occupancy

grid difference ∆O. Furthermore, we utilize the gate recurrent unit (GRU) [3] to preserve previous robot state and

obstacle information.

is low, ∆xa gets closer to ∆xu:

R =

(1− ρ̂)Rmatch + ρ̂Robs, if IK solution exists,

R f ail , otherwise,
(4.3)

where Rmatch is to match ∆xu, and Robs is to avoid obstacles. When there is no IK solution for ∆xa due to collision

or inaccessibility, we set R to R f ail ; we set R f ail to −10.

We compute Rmatch and Robs by comparing ∆xu and ∆xa. Considering ∆t, the difference between ∆xu and ∆xa

is very small. To amplify the difference, we apply a normalization function to Rmatch and Robs. Also, it can control

the relative importance of the two terms. We design a normalization function in the form of a cubic function:

F(v,www) = w0(w1v+w2)
3. Although the value of a cubic function can increase infinitely, we can amplify the value

to a limited range, since the difference between ∆xu and ∆xa is bounded.

Robs indicates whether the end-effector pose xa from ∆xa is further away from obstacles than xu from ∆xu:

Robs = F(distxa −distxu ,wwwobs), (4.4)

where dist is a distance between obstacles and the end-effector; we set wwwobs to [1/3,200,0]. We simply use

the distance with the end-effector instead of the whole arm. This is because an IK solver considering collision

avoidance has already taken into account the distance between the whole arm and obstacles. Furthermore, the

distance for the whole arm makes it difficult to converge the policy π since it is not constant for a given command.

Rmatch represents the difference between ∆xu and ∆xa:

Rmatch = F(epos +λmatcheori,wwwmatch), (4.5)

where epos and eori are the position and orientation error [11] between ∆xa and ∆xu, and λmatch is a constant to

calibrate different units of position (m) and orientation (rad); we set wwwmatch to [−1,100,−2] and λmatch to 0.17, as

used in [75];

4.4.3 Risk prediction for dynamic obstacles

We aim to quickly predict the risk of dynamic obstacles in environments that contain both static and dynamic

obstacles. To this end, we model the risk of dynamic obstacles, ρ , and present a risk prediction network (RPN)

that learns ρ from consecutive robot state and obstacle information (Figure 4.4). To figure out dynamic obstacles,

42

Moving
direction

Dynamic
obstacle

Static obstacles

(a) Obstacle environment

Noise data

-1

1

Ot

Ot-1

ΔO

(b) Occupancy grid difference

Figure 4.5: (a) shows an example of a randomly generated obstacle environment. Gray boxes are static obstacles,

and the orange box is a dynamic obstacle. The green arrow indicates the moving direction of the dynamic obstacle.

(b) shows the occupancy grid difference ∆O between Ot and Ot−1 constructed from sensor data for (a). Each cell

in O is represented as 1 if there is an obstacle or 0 otherwise. Therefore, in the occupancy grid difference, 1 (blue

boxes) and −1 (red boxes) indicates newly detected and disappeared obstacles, respectively. From the occupancy

grid difference, we can see the moving direction of the dynamic obstacle, but the noise data due to sensor noise

occurs near static obstacles (dotted black circles).

the RPN recurrently takes an occupancy grid difference, ∆O, between Ot and Ot−1, motivated by the work of

Villegas et al. [91] as the optical flow estimation method using an image difference.

Ideally, using the occupancy grid difference would remove the information on static obstacles, but in reality,

it is difficult to obtain information on dynamic obstacles due to sensor noise. Even though an occupancy grid O

is updated by the probabilistic rule to reduce sensor noise, it cannot completely eliminate sensor noise near static

obstacles as shown in Figure 4.5. Therefore, we learn the RPN from a dataset including sensor noises to cope with

the sensor noises; we give the Gaussian noise to sensor data and set the standard deviation to 0.008.

Modeling of the risk for dynamic obstacles. Most of the approaches [15,62,92] dealing with dynamic obstacles

have used a distance between a robot and the obstacles and considered their moving direction and velocity. Inspired

by these methods, we model the risk of dynamic obstacles ρ as the proximity between robot links and dynamic

obstacles, and its amount of change. ρ is represented using the collision cost used in [75, 93]:

ρ = σ

(
max

(
coldyn

qt +λρ

N

∑
i=1

(coldyn
qt−i+1

− coldyn
qt−i

)/i,0
))

, (4.6)

where λρ is a weight for the amount of collision cost change, and N is the number of coldyn
q to consider; we set λρ

to 2.0 and N to 3. coldyn
q is a collision cost for dynamic obstacles, which is computed from the distance between

spheres surrounding the robot links and dynamic obstacles. When a robot is close to dynamic obstacles, coldyn
q

has a large value. σ(v) = tanh(v) is to represent ρ between 0 to 1 for easily computing ∆xa between ∆xu and ∆xπ

(Eq. 4.1).

4.4.4 Training details

We train the OACN via reinforcement learning using the SAC [89] algorithm and the RPN via supervised

learning by gathering learning data during the training of the OACN. We prepare three kinds of obstacle scenes,

including 1) static obstacles, 2) dynamic obstacles, and 3) both static and dynamic obstacles.

43

Table 4.1: Results in two kinds of obstacle environments: both static and dynamic obstacles, and only static

obstacles.

Static and dynamic obstacles Static obstacles

Velocity range
[0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9] -

of dynamic obs. (m/s)

Success rate (%) Command error (mean, std)

RCIK [1] 0 -

Ours 93 86 83 78 74 6.6 ×10−5, 8.1 ×10−5

Command error: difference between ∆xu and ∆xa (epos +λmatcheori).

Each scene has box-shaped obstacles with random sizes and positions and has no more than five fixed ob-

stacles and no more than two dynamic obstacles (Figure 4.5a). Dynamic obstacles have velocity between 0.4m/s

and 0.9m/s. The velocity of the end-effector is less than 0.57m/s considering λpos and the short ∆t; we set ∆t to

30ms in simulation environments, considering the sensing cycle.

To recognize obstacles, we construct an occupancy grid O in real-time using the SuperRay [56]; the resolution

of O is 0.05m and the size of O is 40×40×40. Also, we used the extended sensing range to recognize the entire

obstacle in the Gazebo simulator [94].

We set user commands to move a robot from a random start configuration, qs, to a random goal pose, xg,

since it is difficult for a user to give commands by intervening the learning process. We decide a user command

by considering simple linear movement; note that the case where a user command is not feasible, we do not use it

to learn our networks. Each scene is terminated when a robot reaches xg, or there is no IK solution for ∆xa due to

collision or inaccessibility.

As one command means one step, we train the OACN during one million steps with 1×10−5 learning rate,

4096 batch size, 106 replay buffer size, γ = 0.99, and 0.995 polyak for target network update. We update the

OACN 100 times every 1,000 steps using the Adam optimizer [95].

We construct the RPN dataset with 60,000 groups, and each group consists of 16 consecutive joint positions,

occupancy grids, and ρs. We train the RPN during 100 epochs using the adam optimizer with 1×10−5 learning

rate and the mean square error (MSE) loss. In addition, we use the ten thousand occupancy grids to train the

encoder of the OACN. We train the VAE [90] for the pre-trained encoder with the same condition as the RPN.

4.5 Experiments

In this section, we describe our experimental setting and discuss our experimental results. Our experiments

are tested on a machine equipped with a 3.60 GHz Intel i7-9700 K CPU and an RTX 2080 Ti graphics card. In

these experiments, we use the Fetch manipulator with 7-DoF.

4.5.1 Evaluation

To evaluate our method, we prepare two kinds of environments one consisting of both static and dynamic

obstacles and the other consisting of only static obstacles. In each environment, we construct 1,000 problems

with different configuration of obstacles and commands (Figure 4.5a); the generation method of obstacles and

44

: 0.0091048 0.6058863 0.8911822
Dynamic
obstacleGiven

command

Adjusted
command

0.3307878 0.040056

(a) Result in an environment with static and dynamic obstacles

Static
obstacles

: 0.003505 0.0004995 0.00018 0.00046290.002041

(b) Result in an environment with only static obstacles

Figure 4.6: These figures show examples of our results in (a) an environment with static and dynamic obstacles

and (b) an environment with only static obstacles. Orange and gray boxes are dynamic and static obstacles,

respectively, and red and green arrows indicate the magnitude and direction of given command and adjusted

command, respectively. The numbers in the upper right of figures are predicted risks for dynamic obstacles ρ̂s.

(a) shows that as the dynamic obstacle approaches to the manipulator, our method predicts a high ρ̂ and adjusts

the given command to avoid the obstacle. In contrast, as the dynamic obstacle moves away from the manipulator,

our method follows the given commands, predicting a low ρ̂ . (b) shows that our method robustly copes with the

noisy sensor data by predicting a near-zero ρ̂ in a static environment.

commands is the same as making the training scenes (Sec. 4.4.4).

In the environments including both static and dynamic obstacles, we measure the success rate of avoiding

dynamic obstacles at different velocities of dynamic obstacles. For reliable evaluation, we extract 1,000 problems

that cause collisions with dynamic obstacles when following given commands. In contrast, in the environments

including only static obstacles, we extract 1,000 problems where there is no collision with obstacles when follow-

ing given command. In these problems, we measure whether the RPN predicts the risk of dynamic obstacles close

to zero handling sensor noise that occurs near static obstacles; note that sensor data for obstacles in all problems

include sensor noise.

Table 4.1 shows the results of RCIK [1] and our method on the various problems. RCIK is our baseline

approach and is used in our method to find a joint configuration for a given command. Since RCIK is a method of

finding a joint configuration for a given command with high accuracy, we can verify that our method appropriately

adjusts user commands according to the risk of dynamic obstacles. Accordingly, RCIK fails on all problems

involving dynamic obstacles that are set up to collide with dynamic obstacles when following given commands.

On the other hand, our method achieves a maximum success rate of 93% and a minimum of 74% throughout

different velocity ranges of dynamic obstacles; the tested dynamic obstacles are all faster than the maximum

velocity of the end-effector in the uniaxial direction, 0.33m/s. These results indicate that our method can improve

the collision avoidance rate by adjusting the given commands at risk of the collision to avoid obstacles in advance

based on ρ̂ (Figure 4.6a), even though the success rate decreases as the velocity of dynamic obstacles increases.

As shown in the Figure 4.6, when the dynamic obstacle is moving away from the manipulator or absent, our

method shows accurately following given commands by predicting a low ρ̂ . Consequently, the difference between

∆xu and ∆xa is less than 0.0001 on average in 1,000 different static environments (Table 4.1). This result is thanks

to the RPN predicting a low ρ̂ by robustly handling sensor noise (Table 4.2).

For a more detailed analysis of the RPN, we prepare a validation set of 2,000 groups each for different types

45

Table 4.2: The mean and standard deviation of difference between ρ computed from Eq. 4.6 and ρ̂ predicted by

the RPN.

|ρ - ρ̂| No obstacle Static obstacles Dynamic obstacles Both

Mean 3.85 ×10−3 8.44 ×10−3 5.89 ×10−2 6.69 ×10−2

Std 3.57 ×10−3 3.21 ×10−2 8.65 ×10−2 1.03 ×10−1

User
command

Person

(a) Moving to pick the water bottle (b) Moving to transfer the water bottle

Figure 4.7: These figures show tested problems in a real environment. Red arrow and blue arrow indicate the

moving direction of the user commands and a person, respectively. In both problems, there is a risk of collision

since the moving direction of the user commands and the person intersect. (a) is that the user gives commands to

the robot to pick the black water bottle (red dotted box) and the person moves to pick the green water bottle (blue

dotted box). (b) is that the user gives commands to the robot to transfer the water bottle and the person suddenly

appears from behind the robot.

of obstacles: no obstacles, only static obstacles, only dynamic obstacles, and both static and dynamic obstacles.

Each group contains 16 consecutive joint positions, occupancy grids, and ρs calculated using Eq. 4.6; when there

are no obstacles and only static obstacles, ρs are all zero. We measure the difference between ρ and ρ̂ predicted

by the RPN.

Table 4.2 shows the mean and standard deviation (std) of the difference in the validation set. It shows

the largest mean difference of 0.067 and standard deviation of 0.1 in the environment including both static and

dynamic obstacles. These are quite small numbers and indicate that the RPN can predict a value close to ρ we

model. Moreover, the low difference in the environment containing only static obstacles (0.008) supports that the

RPN can robustly cope with noisy sensor data.

In conclusion, we demonstrate through various experiments that our method can increase safety from dy-

namic obstacles by adjusting a user command to avoid obstacles based on the risk prediction for dynamic obsta-

cles.

4.5.2 Real robot test

We tested our method using the real fetch manipulator to verify the feasibility of our method in a real world.

In our test environment, mimicking a remote manipulation task environment, the user observes the robot state and

obstacles, and gives commands to the robot using a keyboard. For the observation, we installed a camera over the

head to check a wide range and additionally used a camera mounted on the robot head (Figure 4.1).

46

As shown in the Figure 4.7, we tested our method in situations where the user transmits the commands with

a risk of collision to the robot without recognizing the movement of a person, since the person suddenly appears

in the camera’s field of view. In these experiments, we showed that our method can predict the risk of dynamic

obstacles from real sensing data and adjust the user commands at risk of collision in a safe direction. Our detailed

experimental results can be seen in the attached video.

In addition, we measure the computation time of our method. Our OACN and RPN takes about 0.6ms and

1.0ms, respectively, and RCIK takes about 28.5ms on average. As a result, the computation time of our method

is about 32ms on average including other computational processes, e.g., GPU allocation (1.5ms). Accordingly,

our method can improve safety without much delay by adjusting the user’s command with approximately 3ms

additional time.

47

Chapter 5. Conclusion

In this dissertation, we have proposed three methods for the safe execution of user commands against various

and dynamic obstacles. We have designed 1) a trajectory optimization method to follow a given end-effector

path while avoiding obstacles and 2) a real-time inverse kinematics solver for consecutively given user commands

in dynamic environments. Also, we have constructed 3) a user command adjustment method to handle risky

commands that can cause collisions with dynamic obstacles due to a user’s unpredictability or carelessness. Lastly,

we have verified the feasibility of our proposed methods using the real, Fetch manipulator.

In Chapter 2, we have presented the trajectory optimization of a redundant manipulator (TORM) that holisti-

cally incorporates three important properties into the trajectory optimization process by integrating the Jacobian-

based IK solving method and an optimization-based motion planning approach. Given different properties, we

have suggested the two-stage gradient descent to follow a given end-effector path and to make a feasible trajec-

tory. We have also performed adaptive exploration to avoid local minima effectively. We have shown the benefits

of our method over the five prior techniques in environments w/ and w/o external obstacles using three differ-

ent types of robots. Our method has robustly minimized the pose error in a progressive manner and achieved a

highly-accurate trajectory at a reasonable time compared to other methods.

In Chapter 3, we have presented real-time collision-free inverse kinematics (RCIK) for performing consecu-

tive 6-DoF commands accurately in environments including static and dynamic obstacles. For real-time solving,

we have proposed a simple method that generates IK candidates with a high probability of achieving the motion

feasibility. We have also suggested a collision-cost prediction network for handling dynamic obstacles. We have

demonstrated the benefits that our method, which can accurately perform the consecutively given commands while

avoiding obstacles in real-time.

In Chapter 4, we have proposed a risk-aware user command adjustment method to avoid the risk of dynamic

obstacles. Our method predicts the risk of dynamic obstacles and adjusts a user command to avoid collisions with

obstacles according to the predicted risk. We have showed the feasibility of our method towards safe execution of

user commands through various experiments in simulation and real robot experiments.

We have shown that our proposed methods improve the safety of user command executions through various

experiments using real robot and sensor data. Nevertheless, it is difficult to guarantee safety against dynamic

obstacles, and the proposed methods can be enhanced by using more meaningful information for obstacles. Al-

though our proposed methods use simple sensor data to figure out the accessibility of dynamic obstacles, we can

utilize semantic information about dynamic obstacles (e.g., expected route and intention to move). We hope that

this dissertation inspires future research on robot arm motion planning for the safe execution of user commands

against various and dynamic obstacles.

48

Bibliography

[1] Mincheul Kang, Yoonki Cho, and Sung-Eui Yoon, “RCIK: Real-time collision-free inverse kinematics using

a collision-cost prediction network”, IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 1, pp. 610–

617, 2021.

[2] Daniel Maturana and Sebastian Scherer, “Voxnet: A 3d convolutional neural network for real-time object

recognition”, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,

pp. 922–928.

[3] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling”, in NIPS 2014 Workshop on Deep Learning, 2014.

[4] Cai Meng, Tianmiao Wang, Wusheng Chou, Sheng Luan, Yuru Zhang, and Zengmin Tian, “Remote surgery

case: robot-assisted teleneurosurgery”, in IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2004, vol. 1, pp. 819–823.

[5] Shinji Kawatsuma, Mineo Fukushima, and Takashi Okada, “Emergency response by robots to fukushima-

daiichi accident: summary and lessons learned”, Industrial Robot: An International Journal, vol. 39, no. 5,

pp. 428–435, 2012.

[6] Marcus Mast, Zdeněk Materna, Michal Španěl, Florian Weisshardt, Georg Arbeiter, Michael Burmester,

Pavel Smrž, and Birgit Graf, “Semi-autonomous domestic service robots: Evaluation of a user interface for

remote manipulation and navigation with focus on effects of stereoscopic display”, International Journal of

Social Robotics, vol. 7, no. 2, pp. 183–202, 2015.

[7] Zdeněk Materna, Michal Španěl, Marcus Mast, Vı́tězslav Beran, Florian Weisshardt, Michael Burmester,

and Pavel Smrž, “Teleoperating assistive robots: a novel user interface relying on semi-autonomy and 3d

environment mapping”, Journal of Robotics and Mechatronics, vol. 29, no. 2, pp. 381–394, 2017.

[8] Gal Gorjup, Anany Dwivedi, Nathan Elangovan, and Minas Liarokapis, “An intuitive, affordances oriented

telemanipulation framework for a dual robot arm hand system: On the execution of bimanual tasks”, in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 3611–3616.

[9] Eimei Oyama, Kohei Tokoi, Ryo Suzuki, Sousuke Nakamura, Naoji Shiroma, Norifumi Watanabe, Arvin

Agah, Hiroyuki Okada, and Takashi Omori, “Augmented reality and mixed reality behavior navigation

system for telexistence remote assistance”, Advanced Robotics, vol. 35, no. 20, pp. 1223–1241, 2021.

[10] Rosen Diankov, “Automated construction of robotic manipulation programs”, 2010.

[11] Patrick Beeson and Barrett Ames, “TRAC-IK: An open-source library for improved solving of generic

inverse kinematics”, in IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE, 2015,

pp. 928–935.

[12] Daniel Rakita, Bilge Mutlu, and Michael Gleicher, “RelaxedIK: Real-time synthesis of accurate and feasible

robot arm motion.”, in Robotics: Science and Systems (RSS), 2018.

49

[13] Daniel Rakita, Bilge Mutlu, and Michael Gleicher, “STAMPEDE: A discrete-optimization method for solv-

ing pathwise-inverse kinematics”, in IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2019, pp. 3507–3513.

[14] Rachel Holladay, Oren Salzman, and Siddhartha Srinivasa, “Minimizing task-space fréchet error via efficient

incremental graph search”, IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 2, pp. 1999–2006,

2019.

[15] Daniel Rakita, Haochen Shi, Bilge Mutlu, and Michael Gleicher, “Collisionik: A per-instant pose optimiza-

tion method for generating robot motions with environment collision avoidance”, in IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 9995–10001.

[16] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klingensmith, Christopher M

Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa, “CHOMP: Covariant hamiltonian optimization for

motion planning”, The International Journal of Robotics Research (IJRR), vol. 32, no. 9-10, pp. 1164–1193,

2013.

[17] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel, “Finding

locally optimal, collision-free trajectories with sequential convex optimization”, in Robotics: Science and

Systems (RSS). Citeseer, 2013, vol. 9, pp. 1–10.

[18] John Vannoy and Jing Xiao, “Real-time adaptive motion planning (ramp) of mobile manipulators in dynamic

environments with unforeseen changes”, IEEE Transactions on Robotics (T-RO), vol. 24, no. 5, pp. 1199–

1212, 2008.

[19] Jakob Thumm and Matthias Althoff, “Provably safe deep reinforcement learning for robotic manipulation in

human environments”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2022.

[20] Kapil D Katyal, Christopher Y Brown, Steven A Hechtman, Matthew P Para, Timothy G McGee, Kevin C

Wolfe, Ryan J Murphy, Michael DM Kutzer, Edward W Tunstel, Michael P McLoughlin, et al., “Approaches

to robotic teleoperation in a disaster scenario: From supervised autonomy to direct control”, in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2014, pp. 1874–1881.

[21] Philip Long, Tarik Keleştemur, Aykut Özgün Önol, and Taşkin Padir, “optimization-based human-in-the-

loop manipulation using joint space polytopes”, in IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2019, pp. 204–210.

[22] Rachel M Holladay and Siddhartha S Srinivasa, “Distance metrics and algorithms for task space path op-

timization”, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,

pp. 5533–5540.

[23] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and Seth Teller, “Anytime motion

planning using the rrt”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011,

pp. 1478–1483.

[24] Samuel R Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped

least squares methods”, IEEE Journal of Robotics and Automation, vol. 17, no. 1-19, pp. 16, 2004.

[25] Anirban Sinha and Nilanjan Chakraborty, “Geometric search-based inverse kinematics of 7-dof redundant

manipulator with multiple joint offsets”, in IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 5592–5598.

50

[26] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, and Bruno Siciliano, “Closed-loop inverse

kinematics schemes for constrained redundant manipulators with task space augmentation and task priority

strategy”, The International Journal of Robotics Research (IJRR), vol. 10, no. 4, pp. 410–425, 1991.

[27] Stefano Chiaverini, “Singularity-robust task-priority redundancy resolution for real-time kinematic control

of robot manipulators”, Transactions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[28] Oussama Kanoun, Florent Lamiraux, and Pierre-Brice Wieber, “Kinematic control of redundant manipula-

tors: Generalizing the task-priority framework to inequality task”, IEEE Transactions on Robotics (T-RO),

vol. 27, no. 4, pp. 785–792, 2011.

[29] Mike Stilman, “Task constrained motion planning in robot joint space”, in IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2007, pp. 3074–3081.

[30] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner, “Manipulation planning on

constraint manifolds”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2009,

pp. 625–632.

[31] Nikolaus Vahrenkamp, Dmitry Berenson, Tamim Asfour, James Kuffner, and Rüdiger Dillmann, “Humanoid

motion planning for dual-arm manipulation and re-grasping tasks”, in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2009, pp. 2464–2470.

[32] Tobias Kunz and Mike Stilman, “Manipulation planning with soft task constraints”, in IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 1937–1942.

[33] Jingru Luo and Kris Hauser, “Interactive generation of dynamically feasible robot trajectories from sketches

using temporal mimicking”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2012, pp. 3665–3670.

[34] Pragathi Praveena, Daniel Rakita, Bilge Mutlu, and Michael Gleicher, “User-guided offline synthesis of

robot arm motion from 6-dof paths”, in IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2019, pp. 8825–8831.

[35] Beobkyoon Kim, Terry Taewoong Um, Chansu Suh, and Frank C Park, “Tangent bundle rrt: A randomized

algorithm for constrained motion planning”, Robotica, vol. 34, no. 1, pp. 202, 2016.

[36] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone, “Gusto: Guaranteed sequential

trajectory optimization via sequential convex programming”, in IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2019, pp. 6741–6747.

[37] Zachary Kingston, Mark Moll, and Lydia E Kavraki, “Exploring implicit spaces for constrained sampling-

based planning”, The International Journal of Robotics Research (IJRR), vol. 38, no. 10-11, pp. 1151–1178,

2019.

[38] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe, Convex optimization, Cambridge university

press, 2004.

[39] Marguerite Frank, Philip Wolfe, et al., “An algorithm for quadratic programming”, Naval research logistics

quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[40] Armand Joulin, Kevin Tang, and Li Fei-Fei, “Efficient image and video co-localization with frank-wolfe

algorithm”, in European Conference on Computer Vision (ECCV). Springer, 2014, pp. 253–268.

51

[41] Harshit Gupta, Kyong Hwan Jin, Ha Q Nguyen, Michael T McCann, and Michael Unser, “Cnn-based

projected gradient descent for consistent ct image reconstruction”, IEEE transactions on medical imaging,

vol. 37, no. 6, pp. 1440–1453, 2018.

[42] Yann Traonmilin, Jean-François Aujol, and Arthur Leclaire, “Projected gradient descent for non-convex

sparse spike estimation”, IEEE Signal Processing Letters, vol. 27, pp. 1110–1114, 2020.

[43] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal, “STOMP:

Stochastic trajectory optimization for motion planning”, in IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2011, pp. 4569–4574.

[44] Peter JM Van Laarhoven and Emile HL Aarts, “Simulated annealing”, in Simulated annealing: Theory and

applications, pp. 7–15. Springer, 1987.

[45] Ameer Tamoor Khan, Shuai Li, and Xuefeng Zhou, “Trajectory optimization of 5-link biped robot using

beetle antennae search”, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.

[46] Xiangyuan Jiang and Shuai Li, “BAS: Beetle antennae search algorithm for optimization problems”, ArXiv,

vol. abs/1710.10724, 2017.

[47] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, “Fast random walk with restart and its applications”,

in Sixth international conference on data mining. IEEE, 2006, pp. 613–622.

[48] Yinghao Zhao, Li Yan, Yu Chen, Jicheng Dai, and Yuxuan Liu, “Robust and efficient trajectory replanning

based on guiding path for quadrotor fast autonomous flight”, Remote Sensing, vol. 13, no. 5, pp. 972, 2021.

[49] Tamar Flash and Renfrey B Potts, “Communication: Discrete trajectory planning”, The International Journal

of Robotics Research (IJRR), vol. 7, no. 5, pp. 48–57, 1988.

[50] Martin Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent”, in Interna-

tional Conference on Machine Learning (ICML), 2003, pp. 928–936.

[51] Brendan O’donoghue and Emmanuel Candes, “Adaptive restart for accelerated gradient schemes”, Founda-

tions of computational mathematics, vol. 15, no. 3, pp. 715–732, 2015.

[52] Donghwan Kim and Jeffrey A Fessler, “Adaptive restart of the optimized gradient method for convex opti-

mization”, Journal of Optimization Theory and Applications, vol. 178, no. 1, pp. 240–263, 2018.

[53] David H Douglas and Thomas K Peucker, “Algorithms for the reduction of the number of points required

to represent a digitized line or its caricature”, Cartographica: The International Journal for Geographic

Information and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[54] Tsuneo Yoshikawa, “Manipulability of robotic mechanisms”, The International Journal of Robotics Re-

search (IJRR), vol. 4, no. 2, pp. 3–9, 1985.

[55] Mincheul Kang, Heechan Shin, Donghyuk Kim, and Sung-eui Yoon, “TORM: Fast and accurate trajectory

optimization of redundant manipulator given an end-effector path”, in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2020.

[56] Youngsun Kwon, Donghyuk Kim, Inkyu An, and Sung-eui Yoon, “Super rays and culling region for real-

time updates on grid-based occupancy maps”, IEEE Transactions on Robotics (T-RO), vol. 35, no. 2, pp.

482–497, 2019.

52

[57] Chonhyon Park, Jia Pan, and Dinesh Manocha, “ITOMP: Incremental trajectory optimization for real-time

replanning in dynamic environments”, in International Conference on Automated Planning and Scheduling

(ICAPS), 2012.

[58] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto, “Voxblox: Incremental

3d euclidean signed distance fields for on-board mav planning”, in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1366–1373.

[59] Avneesh Sud, Miguel A Otaduy, and Dinesh Manocha, “Difi: Fast 3d distance field computation using

graphics hardware”, in Computer Graphics Forum (CGF). Wiley Online Library, 2004, vol. 23, pp. 557–

566.

[60] Hongfeng Yu, Jinrong Xie, Kwan-Liu Ma, Hemanth Kolla, and Jacqueline H Chen, “Scalable parallel

distance field construction for large-scale applications”, IEEE Transactions on Visualization and Computer

Graphics (TVCG), vol. 21, no. 10, pp. 1187–1200, 2015.

[61] Liangliang Zhao, Jingdong Zhao, Hong Liu, and Dinesh Manocha, “Efficient inverse kinematics for redun-

dant manipulators with collision avoidance in dynamic scenes”, in International Conference on Robotics

and Biomimetics (ROBIO). IEEE, 2018, pp. 2502–2507.

[62] Dong Han, Hong Nie, Jinbao Chen, and Meng Chen, “Dynamic obstacle avoidance for manipulators using

distance calculation and discrete detection”, Robotics and Computer-Integrated Manufacturing, vol. 49, pp.

98–104, 2018.

[63] J Chase Kew, Brian Ichter, Maryam Bandari, Tsang-Wei Edward Lee, and Aleksandra Faust, “Neural colli-

sion clearance estimator for fast robot motion planning”, arXiv preprint arXiv:1910.05917, 2019.

[64] Pyung Chang, “A closed-form solution for inverse kinematics of robot manipulators with redundancy”, IEEE

Journal on Robotics and Automation, vol. 3, no. 5, pp. 393–403, 1987.

[65] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito, “Mode-adaptive neural networks for quadruped

motion control”, ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–11, 2018.

[66] VVMJ Satish Chembuly and Hari Kumar Voruganti, “An optimization based inverse kinematics of redundant

robots avoiding obstacles and singularities”, in Proceedings of the Advances in Robotics, pp. 1–6. 2017.

[67] Jia Pan, Sachin Chitta, and Dinesh Manocha, “Fcl: A general purpose library for collision and proximity

queries”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012, pp. 3859–

3866.

[68] Peter Lehner, Arne Sieverling, and Oliver Brock, “Incremental, sensor-based motion generation for mobile

manipulators in unknown, dynamic environments”, in IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2015, pp. 4761–4767.

[69] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox, “Octree generating networks: Efficient convo-

lutional architectures for high-resolution 3d outputs”, in IEEE International Conference on Computer Vision

(ICCV). 2017, pp. 2088–2096, IEEE.

[70] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qingmin Liao, “Deep learning

for single image super-resolution: A brief review”, IEEE Transactions on Multimedia, vol. 21, no. 12, pp.

3106–3121, 2019.

53

[71] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender,

“Learning to rank using gradient descent”, in International Conference on Machine Learning (ICML), 2005,

pp. 89–96.

[72] Donggeun Yoo and In So Kweon, “Learning loss for active learning”, in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, 2019, pp. 93–102.

[73] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip, “Motion planning networks”,

in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 2118–2124.

[74] Xiang Li, Qixin Cao, Mingjing Sun, and Ganggang Yang, “Fast motion planning via free c-space estimation

based on deep neural network”, in IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2019, pp. 3542–3548.

[75] Mincheul Kang and Sung-Eui Yoon, “Analysis and acceleration of torm: optimization-based planning for

path-wise inverse kinematics”, Autonomous Robots, pp. 599–615, 2022.

[76] Baisravan HomChaudhuri, Lee Smith, Lydia Tapia, et al., “Safety, challenges, and performance of motion

planners in dynamic environments”, in Robotics research, pp. 793–808. Springer, 2020.

[77] Kris Hauser, “On responsiveness, safety, and completeness in real-time motion planning”, Autonomous

Robots, vol. 32, no. 1, pp. 35–48, 2012.

[78] Chonhyon Park, Jia Pan, and Dinesh Manocha, “Real-time optimization-based planning in dynamic envi-

ronments using gpus”, in IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2013,

pp. 4090–4097.

[79] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice, Cristina Garcia Cifuentes, Manuel Wüthrich,

Vincent Berenz, Stefan Schaal, Nathan Ratliff, and Jeannette Bohg, “Real-time perception meets reactive

motion generation”, IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 3, pp. 1864–1871, 2018.

[80] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn, “Universal planning net-

works: Learning generalizable representations for visuomotor control”, in International Conference on

Machine Learning (ICML). PMLR, 2018, pp. 4732–4741.

[81] Mohamed El-Shamouty, Xinyang Wu, Shanqi Yang, Marcel Albus, and Marco F Huber, “Towards safe

human-robot collaboration using deep reinforcement learning”, in IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2020, pp. 4899–4905.

[82] Kei Ota, Devesh Jha, Tadashi Onishi, Asako Kanezaki, Yusuke Yoshiyasu, Yoko Sasaki, Toshisada

Mariyama, and Daniel Nikovski, “Deep reactive planning in dynamic environments”, in Conference on

Robot Learning (CoRL). PMLR, 2021, pp. 1943–1957.

[83] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal, “Movement reproduction and obstacle

avoidance with dynamic movement primitives and potential fields”, in IEEE-RAS International Conference

on Humanoid Robots. IEEE, 2008, pp. 91–98.

[84] Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal, “Biologically-inspired dynamical sys-

tems for movement generation: Automatic real-time goal adaptation and obstacle avoidance”, in IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2009, pp. 2587–2592.

54

[85] Huan Tan, Erdem Erdemir, Kazuhiko Kawamura, and Qian Du, “A potential field method-based extension

of the dynamic movement primitive algorithm for imitation learning with obstacle avoidance”, in IEEE

International Conference on Mechatronics and Automation. IEEE, 2011, pp. 525–530.

[86] Andrej Gams, Tadej Petrič, Martin Do, Bojan Nemec, Jun Morimoto, Tamim Asfour, and Aleš Ude, “Adap-

tation and coaching of periodic motion primitives through physical and visual interaction”, Robotics and

Autonomous Systems, vol. 75, pp. 340–351, 2016.

[87] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana, “Optlayer-practical constrained optimization

for deep reinforcement learning in the real world”, in IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2018, pp. 6236–6243.

[88] Richard S Sutton and Andrew G Barto, Reinforcement learning: An introduction, MIT press, 2018.

[89] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,

Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al., “Soft actor-critic algorithms and applications”, Interna-

tional Conference on Machine Learning (ICML), 2018.

[90] Diederik P. Kingma and Max Welling, “Auto-encoding variational bayes”, in International Conference on

Learning Representations (ICLR), 2014.

[91] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee, “Decomposing motion and

content for natural video sequence prediction”, in International Conference on Learning Representations

(ICLR). ICLR, 2017.

[92] Liangliang Zhao, Jingdong Zhao, and Hong Liu, “Solving the inverse kinematics problem of multiple re-

dundant manipulators with collision avoidance in dynamic environments”, Journal of Intelligent & Robotic

Systems, vol. 101, no. 2, pp. 1–18, 2021.

[93] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa, “CHOMP: Gradient optimization

techniques for efficient motion planning”, in IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2009, pp. 489–494.

[94] Nathan Koenig and Andrew Howard, “Design and use paradigms for gazebo, an open-source multi-robot

simulator”, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2004,

vol. 3, pp. 2149–2154.

[95] Diederick P Kingma and Jimmy Ba, “Adam: A method for stochastic optimization”, in International

Conference on Learning Representations (ICLR), 2015.

55

Acknowledgments in Korean

로봇의 인공지능 연구를 하고 싶다는 막연한 생각에 시작했던 대학원 과정이었는데, 7년 반이라는 오랜

기간이지나결실을맺게되었습니다. 쉽지않은시간이었지만,이겨내기위해열심히노력했기에후회보다는

보람되고한단계성장했던시간으로여기고자합니다.

먼저, 부족한 저를 끊임없는 연구 지도와 가르침으로 이끌어 주신 윤성의 교수님께 감사하다는 말씀 전

하고 싶습니다. 연구뿐만 아니라 세상 살아가는데 필요한 많은 것을 배웠습니다. 교수님 가르침 잊지 않고

살아가겠습니다. 그리고바쁜일정에도논문심사맡아주시고지도해주신조성호교수님,명현교수님,김영

준교수님,박대형교수님께도감사의말씀을드립니다.

7년반이라는시간동안, SGVR에서정말많은사람들과좋은인연맺었습니다. 연구실이라는낯선공간

에들어왔었는데이제는이곳이너무익숙해져버렸습니다. 연구실에서함께생활했던선후배분들이있었기에

쉽지않은생활이겨낼수있었고,좋은추억남길수있었습니다. 특히,오랜시간같이지내면서로봇팀을이

끌어 주었던 김동혁 박사님, 권용선 박사님, 응원해 주시고 좋은 말씀해 주셨던 김수민 박사님 감사합니다.

졸업하면서죽기전에볼수있냐고했는데아직도못보고있는 pio박사님,잘지내고있으리라믿습니다. 같

이졸업하는태영군, 곧졸업할인규형, 우빈군에게도좋은추억만들어줘서감사하다는말전하고싶습니다.

그리고연구도와주면서많은이야기나눴던희찬군,윤기군,민성군에게도졸업할수있게도와줘서고맙습니

다. 또한,낯선환경속에서쉽게적응할수있도록도와주었던현철이형,웅직이형,윤석이형,정수형,재형군,

그리고연구실친구홍선이,함께지냈던영기군,치완군,진혁군,형열군외모든졸업한선후배님께고맙다는

말전하고싶습니다. 앞으로좋은연구이어가면서 SGVR을빛낼이미지재윤군,준식군,김민철형,렌더링재

윤군,세빈군,충수형,문성주연구원님,우재군,규범군,주민양,주형군,우정군에게도응원의말을전합니다.

진원군도 졸업 축하합니다! Thanks to Xu Yin, Guoyuan An, and Yaxin Wang. I wish you good luck for your

future! 그리고연구만집중할수있게도와주셨던김슬기나선생님감사합니다.

마지막으로, 항상 무한한 지지를 보내준 우리 가족에게 감사하다는 말 전하고 싶습니다. 제가 스스로

선택하고그선택에책임질수있도록키워주시고믿어주신부모님께감사드리며,항상지지해주었던동생들

에게도 고맙습니다. 또한, 내 소중한 친구들에게 항상 응원해 주고 지지해 줘서 고맙다는 말 전하고 싶으며,

항상힘이되어주는김윤지님에게도감사의말씀전합니다.

정말많은분들의도움을받았기에힘든시간들이겨내고성장할수있었습니다. 앞으로새로운환경에서

다른 어려움이 있겠지만, 대학원 과정에서의 경험으로 슬기롭게 이겨나가겠습니다. 이런 고마움 잊지 않고

살아가겠습니다. 정말감사합니다!

56

Curriculum Vitae in Korean

이 름: 강민철

생 년 월 일: 1990년 05월 02일

학 력

2009. 3. – 2015. 2. 충남대학교메카트로닉스공학과 (학사)

2015. 8. – 2017. 8. 한국과학기술원로봇공학학제전공 (석사)

2017. 8. – 2023. 2. 한국과학기술원전산학부 (박사)

연 구 업 적

1. Mincheul Kang, Minsung Yoon, and Sung-Eui Yoon, Towards Safe Remote Manipulation: User Command

Adjustment based on Risk Prediction for Dynamic Obstacles (under review).

2. Minsung Yoon, Mincheul Kang, Daehyung Park, and Sung-Eui Yoon, Reinforcement Learning based Initial-

ization of Trajectory Optimization for Path-following Problems of Redundant Manipulators (under review).

3. Mincheul Kang and Sung-Eui Yoon, Analysis and Acceleration of TORM: Optimization-based Planning for

Path-wise Inverse Kinematics, Autonomous Robots, 2022.

4. Mincheul Kang, Yoonki Cho, and Sung-Eui Yoon, RCIK: Real-Time Collision-Free Inverse Kinematics

Using a Collision-Cost Prediction Network, IEEE Robotics and Automation Letters (RA-L), 2021.

5. Mincheul Kang, Heechan Shin, Donghyuk Kim, and Sung-Eui Yoon, TORM: Fast and Accurate Trajectory

Optimization of Redundant Manipulator given an End-Effector Path, IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2020.

6. Mincheul Kang, Donghyuk Kim, and Sung-Eui Yoon, Harmonious Sampling for Mobile Manipulation Plan-

ning, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

7. Donghyuk Kim, Mincheul Kang, and Sung-Eui Yoon, Volumetric Tree*: Adaptive Sparse Graph for Effec-

tive Exploration of Homotopy Classes, IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2019.

8. Hongsun Choi, Mincheul Kang, Youngsun Kwon, and Sung-Eui Yoon, An Objectness Score for Accurate

and Fast Detection during Navigation, The World Congress on Advances in Nano, Bio, Robotics and Energy

(ANBRE), 2019.

9. Mincheul Kang, Youngsun Kwon, and Sung-Eui Yoon, Automated Task Planning using Object Arrangement

Optimization, International Conference on Ubiquitous Robots (UR), 2018.

57

