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초 록

자율 로봇 및 자동화 시스템에서 변화하는 주변 환경을 이해하는 것이 필수요소이다. 이러한 주변 환경의

기하 정보는 깊이 센서나 라이다를 이용함으로써 점군 데이터 형태로 얻을 수 있다. 점군 데이터를 활용하여

주변 환경을 표현하는 점유 지도는 경로 생성이나 충돌 회피 등 로보틱스 응용 분야의 기반 기술로서 지난

수십 년 동안 여러 방면으로 연구되었다. 그러나, 한 시점에서 획득한 점군 데이터는 주변 공간의 부분적인

기하정보만을제공하기때문에,동적인환경에서실시간으로정밀하게점유정보를표현하는기술은여전히

도전적인 문제로 남아있다.

본 논문은 점군 데이터의 공간 상관성을 활용하여 실시간으로 점유 표현을 업데이트하는 정밀 점유

지도 생성 기술을 다룬다. 구체적으로, 변화하는 환경에서 실시간으로 점유 표현을 업데이트하기 위해서, 1)

점유 지도 업데이트 방식의 기하 분석을 통해 알고리즘을 가속하는 기법을 제안한다. 또한, 부분적인 공간

관측 정보로부터 정밀한 점유 지도 표현을위해 2) 점유 관측값의 상관관계를 활용하는 회기 분석 및 3) 점군

데이터의 공간 상관성을 사전 지식으로 학습하는 딥러닝 기반의 점유 지도 생성 방법을 제안한다.

핵 심 낱 말 점유 지도, 공간 상관성, 정밀 표현, 실시간 업데이트, 점군 데이터

Abstract

Understanding a changing environment is one of the essential elements in autonomous robots and sys-

tems. A depth sensor or a LiDAR provides the geometric information of the surroundings as a point

cloud. As a fundamental technique for robotics applications such as motion planning and collision avoid-

ance, occupancy mapping techniques from sensor data have been studied for decades. However, updating

robust representation with real-time processing speed remains a challenging problem of occupancy map-

ping in a dynamic environment, since the point cloud data of a single scan contains partial geometry

observations of the environment.

This dissertation studies the occupancy mapping techniques that update their dense occupancy

representations in real-time, exploiting spatial correlation of point cloud data.

Specifically, we propose a method for real-time occupancy updates in a dynamic environment; 1) an

acceleration algorithm exploiting the geometric update patterns of an occupancy map. Furthermore, we

propose two approaches to update the dense occupancy representation of the environment given sparse

sensor data; 2) regression method using correlation among occupancy observations, and 3) deep-learning

network embedding prior knowledge about the spatial correlation of measuring sensor data.

Keywords Occupancy map, spatial correlation, real-time update, dense representation, point clouds
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Chapter 1. Introduction

Many robotic applications, such as motion planning and collision avoidance, use various sensor

data for understanding their environments. Well-known sensors (e.g., depth sensors, laser scanners, and

LiDARs) are often exploited as a means to estimate the surroundings, and these produce a noisy point

cloud that represents a partial geometry of environment. The point clouds, which the sensors have

collected over time, can serve as a map representation themselves for the environment. Nonetheless, the

point clouds can have an excessive number of points especially for large-scale scenes, and more severely

they can have inherent sensor noise. Due to these issues, many prior approaches [1–4] convert point

clouds to other representations (e.g., meshes) in order to process them in a simple and efficient way.

New sensor measurements

at timestep 𝑡
Occupancy estimations 

using new sensor data

Occupancy representations

updated until 𝑡 − 1 timesteps

Occupancy representations

after updates

Occupancy

estimation +
Update

Figure 1.1: On-the-fly occupancy mapping. This figure shows the process of on-the-fly occupancy

mapping when a sensor captures new measurements. In a single scan, various models estimate the

occupancy states of the sensing area, and then update the occupancy representations of the maps. In

this figure, the white to black color represents occupancy probability from the free to occupied states.

As one of the notable examples in the robotics literature, occupancy maps have been widely used as

a functional approximation of the changing environment over time. Many robotic systems operate with

various dynamic objects such as walking humans or driving cars, and thus require a geometry represen-

tation of the dynamic environment for their tasks. A mapping method uses occupancy information to

model the environment’s geometry in these systems. As shown in Fig. 1.1, an occupancy map updates

its occupancy representation when a sensor captures new partial geometry of the environment.

As one of the most well-known approaches, the occupancy grids partition an environment into mul-

tiple cells representing the occupancy probabilities. While simple uniform grid maps [5, 6] are proposed

early and succeed in various robotic applications, it has certain limitations. Its main drawback is that it

requires a tremendous size of memory when we handle large-scale environments or the map has a high

resolution for the accurate representation. Tree-based representations such as a quadtree map in 2D and

an octree map in 3D have been studied to overcome the problem [7–10]. The octree map divides a 3D
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Observation 

point
Sensor origin

Object

(a) Sparse occupancy representation

Free space

Occupied space

(b) Dense occupancy representation

Figure 1.2: Occupancy maps at different density levels. Left captures of each sub-figure show the

regions that a map represents as occupied space. The color in the capture represents the relative height

of the structure. (a) An occupancy map can have holes representing no occupancy information due to

sparse sensor observations. (b) To solve the problem, we exploit a spatial correlation of point clouds in

this dissertation. Our approach can predict occupancy states of unobserved regions, resulting in dense

occupancy representation of an environment.

space into 8 sub-spaces having the same volume and represents a space with a cell having an occupancy

state. When all the children cells have the same states, this map results in a compact representation

than the grid map. The volumetric structure enables to improve the performance of downstream ap-

plications, i.e., bounding volume of collision detection. Furthermore, this simple representation allows

updating occupancy states in real-time via a ray-casting algorithm on grid. However, like Fig. 1.2-(a),

sparse point clouds can lead to problematic holes in the resulting maps, where some cells do not contain

any occupancy observations.

To overcome this issue, machine-learning based maps have been studied to represent the environ-

ment’s occupancy as a continuous function, resulting in dense occupancy reconstruction from noisy,

sparse sensor data. The maps adopt well-studied inference models to learn an implicit correlation of

partial occupancy observations. For example, Gaussian process-based methods [11–17] can provide oc-

cupancy estimations with predictive variances, but the heavy time complexity of the regressor remains.

The prior methods [18–25] employ a logistic classifier model to overcome the well-known drawback of GP
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models. The functional occupancy estimators of these maps enable predicting an occupancy state in an

unmeasured region, and thus can reconstruct a dense representation of the environment. Nonetheless,

the reconstruction process requires a high computational overhead in downstream on-the-fly applications.

Some works [26–29] have been studied to combine the strengths of two approaches; volumetric

structure of occupancy grid and occupancy prediction of the learning-based map. These methods train

each local occupancy estimator with new sparse sensor measurements, and then incrementally update

the estimations to grid cells. The estimators such as the Gaussian process or kernel regression allow

the dense representations of occupancy maps despite sparse sensor data. Furthermore, the volumetric

approximation can improve performances of robotics applications, while preserving fast map updates.

This dissertation aims to design an occupancy map that densely represents the environment’s

occupancy states and updates its representation in real-time, exploiting a spatial correlation of point

clouds. Chapter 2 proposes an accelerating algorithm based on geometric update patterns of sensing

data for real-time occupancy mapping. Furthermore, Chapter 3 proposes a robust occupancy estimator

using non-uniform distributions of sparse occupancy observations in order to achieve dense occupancy

representation. In Chapter 4, we also introduce a novel deep-learning network, which learns a spatial

correlation of sensing an environment’s geometry as prior knowledge. The proposed network improves

the density of point clouds and thus results in dense occupancy representation.
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Chapter 2. Super Rays and Culling Region for Real-Time

Updates on Grid-based Occupancy Maps

2.1 Introduction

(a) Indoor dataset (b) Outdoor dataset

(c) KITTI dataset

Figure 2.1: Occupancy mapping results. These figures visualize the map representations for three

public datasets. (a) Blue and green cubes represent occupied and free spaces, respectively. (b), (c) We

use heat colors to represent relative heights for visualizing the occupied cells of the maps.

Real-time robotic applications require to fast process a point cloud acquired over time for reacting

to a dynamic environment where obstacles appear suddenly. Grid-based maps are appropriate for these

applications thanks to the high update speed. Unfortunately, constructing such occupancy maps out of

point clouds can still take a high computation overhead on sensors with high-frequency. We observed a

low update speed when using the large numbers of points captured by depth sensors or reconstructed by

a deep-learning network (Chap. 4).
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In this chapter, we present novel, efficient map update methods based on super rays as well as

culling region, while achieving high performance without compromising the representation accuracy of

grid-based maps. Specifically, we propose to use super rays of points as our main update method for

maps, where the ray is a common model for extracting geometric information from point clouds; for

example, the space between a sensor origin and a point of point cloud has non-collision. A super ray is a

representative ray for a set of rays and is constructed in a way that updating the maps with those super

rays traverses the same set of cells with original rays. To generate such super rays given input points, we

propose to use a mapping line for updating 2D maps (Sec. 2.3.1 and Sec. 2.3.2), and generalize it to 3D

maps using the 2D approach (Sec. 2.3.3). Furthermore, we propose a culling region that uses occupancy

correlation between scans and reduces redundant computations by stopping unnecessary traversals of

rays in advance (Sec. 2.3.5).

To demonstrate the benefits and robustness of our methods, we test our methods and prior works

with a variety of cases. We first test the update performance with two public datasets (Fig. 2.1-(a) and

(b)) for the grid-based maps such as uniform 3D grid map and octree map. We found that our method

combined with super rays and culling region is robust enough to show the performance improvement,

6.3 and 1.8 times improvement across a diverse set of configurations, compared to prior works in the

indoor and outdoor scenes, respectively (Sec. 2.4.1). Furthermore, we provide the update speed and the

representation accuracy of various mapping algorithms using a public KITTI dataset [30], for discussing

the practical benefits of real-time updates. In this test, we found that our combined method can give

positive effects to such navigation in practice by showing the best frequency of updates (Sec. 2.4.2).

2.2 Overview

2.2.1 Updates on Grid-based Occupancy Maps

A point cloud consists of points captured by a depth sensor or laser range finder. When the sensor

reports a point, it implies that the space between the sensor origin and the point is empty. As a result,

we associate a ray with the point starting from the sensor origin. Thus, the problem can be transformed

into map traversal along the ray from the sensor origin toward the reported endpoint.

Such a ray provides two kinds of state information about space under the study: occupied and free

states. The endpoint of the ray has the occupied state since the sensor reports an object on that particular

point. On the other hand, space that the ray passes through has the free state. This information is critical

for various applications such as motion planning. Therefore, it is essential to construct an occupancy

map accommodating this information acquired from sensors. Unfortunately, data captured by sensors

are plagued by various levels of noise. To consider such noise, map representations commonly use an

occupancy probability, instead of simple boolean occupancy states of occupied or free.

Grid-based maps such as uniform grid-map or octree-map partition an environment into grid cells

representing the occupancy probabilities, and update them to maintain the recent occupancy states of

the environment through sensor measurements. Such maps use a ray-casting algorithm to find cells where

rays modeled by point clouds traverse on a grid from the sensor origin to the endpoints.

A Ray-casting algorithm such as 3DDDA [31] computes adjacent cells on the uniform grid where a

ray traverses from the start to the end cells containing the sensor origin and endpoint, respectively. The

cells traversed by rays are updated to have free states, and the end cells are updated to have occupied

states.
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Leaf nodes

Root node

Figure 2.2: Updating a cell’s occupancy in a tree-based map. The ray traverses the cell colored by green

in the left figure. To maintain the tree structure of the quadtree, we update the occupancy probabilities

of all nodes from the leaf to the root, colored by green in the right figure.

On the assumption that cells of a map are independent of occupancy states, the likelihood of

occupancy, P (x|z1:t), represents the occupied state of a cell, x, given sensor measurements, z1:t, from

the initial time step 1 to the current time step t, and can be modeled by the Bayes rule and Markov

assumption [32] as follows:

P (x|z1:t)
1− P (x|z1:t)

=
P (x|z1:t−1)

1− P (x|z1:t−1)

P (x|zt)
1− P (x|zt)

1− P (x)

P (x)
. (2.1)

For the fast update to the map, a well-known approach using the log-odd notation L(x) = log
[

P (x)
1−P (x)

]
transforms the prior equation into:

L(x|z1:t) = L(x|z1:t−1) + L(x|zt)− L(x). (2.2)

Based on this equation, the OctoMap framework [9] uses a prior probability P (x) = 0.5 representing

the unknown state and the simple inverse sensor model on the log-odd notation L(x|zt) defined as the

following:

L(x|zt) =

locc, if the endpoint of a ray is in the cell,

lfree, if a ray passes through the cell.

As a result, the simple form of Eq. 2.2 results in the efficient update of occupancy probability at a cell

by using the fast addition operation.

When a cell has an occupancy probability that has been accumulated over long time steps, a new

input data that conflicts with the current state of the cell cannot change the state immediately. This over-

confidence problem can frequently occur in dynamic environments. Yguel et al. [33] solve the problem

by using a clamping policy that limits the occupancy probability of a cell based on the minimum and

maximum state bounds: lmin and lmax for free and occupied states, respectively. The state of a cell

limited by either one of those two bounds is considered to be fully free or fully occupied with a high

occupancy probability. Fig. 2.3 and Fig. 2.4 show illustrations of updating the grid map in 2D given

point clouds.

Hierarchical representations. A uniform grid map consists of cells having the same size deter-

mined by a user-defined resolution. We find a set of traversed cells of rays using a ray-casting algorithm,

and update their occupancy probabilities using the update rule (Eq. 2.2). Using the uniform grid with

the ray-casting updating method is intuitive and straightforward to represent occupancy states of an

environment, but can require a vast size of memory, especially when we have a high resolution. To
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Figure 2.3: An overview of our super ray when we have the new measurements as shown in (a). (b) and

(c) represent occupancy probabilities of cells after updating the 2D grid map with different methods. The

green and red cells have free and occupied states, respectively. The bold numbers with ∗ notation in cells

indicate that those cells are classified into fully occupied or fully free state. In (b), the state-of-the-art

method updates the same set of cells for three different rays, which causes redundant computation on

overlapped traversals on the cells. The blue ray in (c) is a super ray computed out of those three rays in

(b). The super ray updates the map with a single traversal on the cells. In this figure, we use locc = 1.7,

lfree = −0.8, lmax = 3.0, and lmin = −1.5.
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(c) Culling Region

Figure 2.4: An overview of our culling region, given the new measurements as shown in (a). In (b), the

prior method causes redundant computation on traversals on the cells having fully-free states. The blue

box in (c) is a culling region that prevents the three rays to traverse the fully-free cells for updates. In

this figure, we use the same setting with Fig. 2.3.

overcome the problem, a quadtree map in 2D or an octree map in 3D are proposed to have the tree

data structure for providing various resolutions, resulting in a more compact representation. Such maps

merge 4 or 8 sub-divided children nodes that have the same occupancy probabilities into one parent

cell representing a space at a coarser level (Fig. 2.2). The properties of the tree structure can be used

efficiently for collision detection or motion planning, although it generates the hierarchical update from

the leaf to all the parent cells unlike the grid map. The recent OctoMap [9] framework avoids the du-

plicated updates made from updating the tree structure. The work is done by batching leaf cells that

all rays traverse on the uniform grid with the maximum resolution, before updating the maps. The

batching-based method updates tree-based maps in a single time using the batched cells, resulting in the

performance improvement.
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2.2.2 Motivations

Grid-based occupancy maps have been widely used for various applications. We, however, found that

updating these maps can take a huge amount of computation time compared to the frequency of sensor

measurement. Furthermore, we have identified that the original update method for occupancy maps

has redundant computations, because of the discrete nature of grid-based representations. For example,

Fig. 2.3-(b) shows three different rays traverse the same set of cells in the 2D grid, while these rays have

different endpoints. When we update the map with these rays one-by-one, duplicate computations are

made on traversal and updating through the exact same set of cells, resulting in lower performance.

Additionally, certain traversals do not contribute at all to cells whose occupancy probabilities are

out of range of the min and max bound values due to the clamping policy, as shown in Fig. 2.4-(b). We

define the traversal as an unnecessary traversal. These problems frequently occur because the original

update method does not consider the discrete nature and occupancy states of map representations.

2.2.3 Overview of Our Approaches

To overcome the problems aforementioned above, we first propose an update method utilizing super

rays for occupancy maps. We define a super ray as a representative ray to rays associated with given

points (Fig. 2.3). The super ray is constructed in a way that traversing those rays for updating the map

requires to access the same set of cells in the map. We then update the map by traversing those cells

with the super ray only a single time, while considering the number of points associated with the super

ray, thus removing redundant computation and achieving higher performance.

On top of super rays, we propose a culling region-based method by culling out traversal on cells

having already saturated occupancy probabilities to fully-free states. We define a culling region as a

set of cells where traversals from those cells to the sensor origin are unnecessary (Fig. 2.4). If rays

encounter the culling region while traversing from their endpoints to the sensor origin, our method stops

the remaining traversals from a cell entering the culling region to the sensor origin. As a result, we can

achieve a higher performance thanks to removing unnecessary traversals.

Our two approaches are orthogonal and easily applied to the 3DDDA and the batch based methods

on grid-based occupancy maps. Ours improve the performance of updates compared to the prior work,

and these two methods complement each other as shown in the result section (Sec. 2.4). Overall, our

method combined both with super rays and culling region shows the best performance on average.

2.3 Updates using Super Rays and Culling Region

In this section, we explain our approaches in detail. We first propose a mapping line and explain

how to use it for generating super rays starting from a single, seed frustum containing all the points of a

cell in the map (Sec. 2.3.1). We then identify which points in a cell have the same set of traversed cells

for updating the map based on the mapping line (Sec. 2.3.2). To extend the concept of a 2D case into a

3D case, we introduce a mapping plane conceptually used for generating super rays in the 3D case and

then explain how to solve the 3D problem efficiently using mapping lines of the 2D case (Sec. 2.3.3). We

then explain how to update cells that each super ray passes without compromising the representation

accuracy of the map (Sec. 2.3.4). In the end, we also propose to use a culling region for improving

performance by considering occupancy states of the map (Sec. 2.3.5).
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Figure 2.5: An example of generating a mapping line for a cell c. The red grid point g1 in (b) divides

the seed frustum into two sub-frustums, and its projected point generates two segments on the mapping

line. In (c), two grid points in out2 in the slice 2 also generate two more segments in the mapping line

shown in (d).

2.3.1 Generating a Mapping Line

In general, point clouds are defined in the sensor coordinate system, while occupancy maps model

them in the world coordinate. Based on the assumption that we know the position and orientation for

the sensor in the world coordinate, we transform point clouds from the sensor coordinate to the world

coordinate and update the map with them.

For each cell, c, in the map, we conceptually construct a seed frustum starting from the sensor origin

to the cell box containing all the points in the cell c, the red box shown in Fig. 2.5-(a). Starting from

the seed frustum, we partition it into multiple ones, each of which traverses the same cells of the map.

To do this, we design our algorithm to access grid cells slice-by-slice, where a slice contains cells in a line

for the 2D data. For this process, we pick an axis, i.e., X or Y axis, for computing such slices and treat

it as a processing direction. Fig. 2.5 shows a case that X axis is the processing direction.

For identifying which points are mapped to the same super ray, we introduce a mapping line, which

is a line segment that overlaps between the cell c and the slice containing the cell c. Fig. 2.5-(a) shows

an initial mapping line. Each segment of the mapping line corresponds to one of the super rays, while

we also use the terms of frustums or super rays conceptually to explain our geometric concepts. The

initial mapping line starts with a single line segment representing a super ray, but it can be divided into

multiple segments corresponding to multiple super rays.

One key observation for generating the mapping line to represent different frustums is that the

traversal patterns of cells differ along grid points, when we consider cells slice-by-slice. Fig. 2.5-(b)
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Algorithm 1 BUILD MAPPING LINE

Require: Cbox, a cell box in 2D, O, a sensor origin in 2D

Ensure: Mline, a mapping line

1: Mline ← InitMappingLine(Cbox)

2: Sslice ← InitSlices(O,Cbox)

3: for i = 1 to length(Sslice)− 1 do

4: g ← ComputeGridPoints(Sslice[i], Cbox)

5: for j = 1 to length(g) do

6: Mline.insert(Projection(gj))

7: end for

8: end for

9: return Mline

shows a grid point, shown in the red circle within the initial frustum. Given the grid point, the traversed

cells differ, and thus we need to partition the seed frustum into two different ones, resulting in two

segments on the mapping line (Fig. 2.5-(b)).

Based on this observation, the key operation is how we efficiently generate the mapping line within

the frustum. Let outi of i-th slice to denote the faraway line of the slice along the processing direction.

Fig. 2.5-(b) shows an example of out1 for slice 1. We can then compute the two intersection points,

intmin and intmax, of the seed frustum for each i-th slice like the blue circles in Fig. 2.5.

Suppose that the first slice containing the sensor origin is slice 1 and the last slice containing point

clouds is slice N . Our algorithm of generating a mapping line works in an iterative manner from slice 1 to

slice N−1. To find grid points that differentiate the traversal pattern, we first compute two points, intmin

and intmax, within outi of each slice starting from slice 1. We then project all the grid points between

intmin and intmax onto the mapping line. Suppose that there are m grid points, g = {g1, g2, · · · , gm}.
These grid points partition the current frustums into at most m + 1 sub-frustums, resulting in m + 1

corresponding segments on the mapping line. Each pair of two consecutive points projected onto the

mapping line implicitly defines a segment and its associated frustum (and its super ray). Note that we

can easily find these grid points and compute segments of the mapping line thanks to the discrete nature

of occupancy maps, resulting in a fast update method. The pseudocode of generating a mapping line for

a seed frustum is shown in Alg. 1.

2.3.2 Generating Super Rays using the Mapping Line

After we generate the mapping line of each cell at the prior step, we use it for computing which rays

should be merged into the same super ray. To perform this process, we map all the input rays onto the

mapping line and count how many rays are assigned to each segment of the mapping line (Fig. 2.6).

The rays assigned to the same segment of the mapping line have the same traversal patterns in terms

of cells traversed for updating the map. We can merge the rays into a single super ray with a weight as

the number of merged rays. We use the weight information associated with the super ray to efficiently

update the occupancy map without losing the representation accuracy, because the super ray traverses

all the same set of cells where its associated rays traverse. We skip here proving the completeness of using

the mapping line to classify rays traversing the same set of cells. Instead, we show the completeness of

our algorithm as Theorem 1 in Appendix.
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Figure 2.6: A process to generate three different super rays out of five rays using the mapping line.

(a) A new ray maps to a new segment, and we treat it as a new super ray with a weight of one. (b)

Another ray maps to the prior segment, and we increase its weight to two. (c) The new ray maps to a

new segment, and a new super ray is assigned to it. (d) The figure shows the final, three super rays with

their weights.

2.3.3 Extension to the 3D Case

In this section, we explain how we extend our prior 2D approach into handling 3D point clouds. We

first introduce a concept of mapping plane for generating super rays in the 3D case. Different regions in

the mapping plan indicate different traversal patterns. We then propose to use three orthogonal mapping

lines defining such different regions in the mapping plane, to handle the 3D case efficiently. For the sake

of clarity, these corresponding concepts in 2D and 3D cases are summarized in Table 2.1.

Similar to the 2D case, we first compute a bounding volume containing point clouds in the map

representation. We also construct a seed frustum traversing to the volume and then partition the frustum

into sub-frustums, each of which traverses the same set of cells.

Table 2.1: Corresponding concepts or 2D and 3D cases.

Case 2D 3D

Data structure for generating super rays Mapping line Mapping plane

Element of the mapping data structure Segment Region

Geometric entity differentiating traversal patterns of rays Grid points Edges of cells
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Figure 2.7: An example of a mapping plane on the plane z = d in the 3D case. The projected lines,

which three edges (red, green, and blue) of all grid points are projected to, partition the plane into

regions, each of which is associated with a unique traversal pattern.

The key observation for the 3D case is that traversal patterns of cells differ along edges of cells, not

just at the grid points. Based on the observation, we can partition the seed frustum into sub-frustums,

each of which has the same traversal pattern and thus is constructed as a super ray. Fig. 2.7 shows

an example of the mapping plane consisting of regions associated with super rays. In this example, we

pick one of the planes that are orthogonal to axes, e.g., z = d, and explain our approach based on this

example plane for the sake of clarity; other mapping planes can be treated in a similar manner. As you

can see in Fig. 2.7, those projected lines, i.e., red, green, and blue lines, in the mapping plane creates

many complex regions.

Conceptually, we can use the mapping plane for generating super rays in a similar manner to using

the mapping line for the 2D case described in Sec. 2.3.2. Simply speaking, we map all input rays onto

the mapping plane and count how many rays are assigned to each region of the mapping plane. The

rays assigned to the same region of the mapping plane have the same traversal pattern in terms of cells

traversed for updating the map. Using the mapping plane, we can merge multiple rays into a single

super ray. The completeness of our algorithm using the mapping plain to generate super rays is given

as Theorem 2 in Appendix.

We now go into details of our 3D approach using mapping plane to generate super rays, starting

from introducing geometric values shown in Fig. 2.7. Let (xi, yj) be a 2D point, where the 3D grid point

(gx, gy, gz) is projected onto the plane z = d. They are expressed as follows:

xi =

(
d− oz
gz − oz

)
(gx − ox) + ox, (2.3)

yj =

(
d− oz
gz − oz

)
(gy − oy) + oy, (2.4)

where the line x = xi partitions the plane along the X axis, since a ray mapped on the left side of the

line has a different traversal pattern to another ray mapped on the right side. The line y = yj partitions

the plane along the Y axis, in the same manner. Note that the value xi is computed only with X and

Z coordinates of the grid point, without the Y coordinate. As a result, the line x = xi can be computed

in the 2D X − Z space. Another partitioning line y = yj is treated similarly in the Y − Z space.
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Algorithm 2 GENERATE SUPER RAYS

Require: P , a set of points in a cell, O, a sensor origin

Ensure: Sray, a set of super rays

1: Cbox ← ComputeCellBox(P )

2: Mxy ← BuildMappingLine(Cbox(X,Y ), O(X,Y ))

3: Myz ← BuildMappingLine(Cbox(Y, Z), O(Y, Z))

4: Mzx ← BuildMappingLine(Cbox(Z,X), O(Z,X))

5: Sray ← GenerateSuperRays(Mxy,Myz,Mzx, P )

6: return Sray

Mapping plane on z=d

x0

Δ

x4

y0

y3
0

Δ3

Figure 2.8: A process to generate super rays using a mapping plane. In this example, we project a ray

on the region of the mapping plane for finding the traversal pattern of a ray.

For the red edge projected in the mapping plane z = d shown in Fig. 2.7, it partitions the plane in

a slant line. Its gradient, ∆k, is computed by the slope from the sensor origin (ox, oy) and the projected

point (xi, yj):

∆k =
yi − oy
xj − ox

=
gy − oy
gx − ox

. (2.5)

While the slant line seems to behave differently from other orthogonal lines, we can know that the

gradient of the slant line consists of only X and Y coordinates without the Z coordinate, indicating that

this can be treated in the 2D X − Y space.

We now explain the geometric interpretation of utilizing the mapping plane to generate super rays

shown in Fig. 2.8. Let xi and xi+1, yj and yj+1, and ∆k and ∆k+1 be the X, Y, and gradient values of

lines, respectively, which construct the smallest region of the mapping plane. To classify rays of point

clouds having the same traversal patterns and then generate super rays, we map all the rays into one of

the regions on the mapping plane. This classification task of a ray can be expressed as:
(a)xi ≤ xp < xi+1,

(b)yj ≤ yp < yj+1,

(c)∆k ≤ ∆p < ∆k+1,

(2.6)

where (xp, yp) is a projected point of a ray onto the mapping plane and ∆p is a gradient between the

sensor origin and the projected point.

Implementation of generating super rays. We use Eq. 2.6 to classify rays with the same

traversal patterns and generate super rays. Eq. 2.6 consists of three sub-tests that each of them is

computed with two of three coordinates, as we mention in Eq. 2.3, Eq. 2.4 and Eq. 2.5. Each sub-test

is identical to process finding segments of mapping line for generating super rays in 2D. For example,
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Eq. 2.6-(a) uses X and Z coordinates without Y coordinate as can be seen in Eq. 2.3, and has the same

formulation to finding segments of mapping line in X − Z space. As a result, we can classify rays with

the same traversal patterns by finding rays projected into all the same segments of three mapping lines

in sub-spaces. Using this fact, we can implement our method to generate super rays in 3D using our 2D

approach we introduce in Sec. 2.3.1. The pseudocode of generating super rays for a cell in the 3D case

is shown in Alg. 2.

2.3.4 Updating Occupancy Map using Super Rays

To update occupancy maps with computed super rays, we use existing update methods with a

minor modification. To determine cells needed for the update, we use the 3DDDA based algorithm [31].

Because all the points in a super ray update the same set of cells of a map, we traverse and update those

cells in only a single traversal. Since a super ray is generated for multiple points, we take account of

the weight of the super ray w (the number of contained points), and use the following, modified inverse

sensor model:

L(x|zt) =

w · locc, if the endpoint of a super ray is in the cell,

w · lfree, if a super ray passes through the cell.

It is then guaranteed that we achieve the same occupancy map to that computed by processing points

individually with multiple traversals.

Batching based updates. For a high performance of updating tree-based occupancy maps, we

use a batching technique implemented in OctoMap [9]. The batching method reduces the number of

repeated accesses to cells from a leaf to the root for updating the occupancy probability of the leaf cell.

The method batches cells that rays traverse, and then updates tree-based maps in a single time using

the batched cells. This technique shows good performance in tree-based maps, but the time for batching

the cells depends on the overhead of finding such cells. Fortunately, super rays can reduce the cost of

the batching process thanks to a single traversal of super ray, instead of multiple traversals of points

(Sec. 2.4.3).

2.3.5 Culling Region based Updates

In this section, we propose another approach, culling region based update method, which utilizes

occupancy states of maps updated by previous scans. The method increases the performance of super

rays when we use an occupancy map with a high resolution. The number of generated super rays can be

similar to the number of points. Therefore, we cannot maximize the benefits of using super rays at such

high-resolution maps. To overcome the issue, we propose its complementing method, a culling region

based update method, for achieving a robust performance even with high resolutions.

As we mentioned in Sec. 2.2.1, the clamping policy prevents occupancy maps from having the

over-confidence problem. This thresholding technique makes the maps to support dynamically chang-

ing environments. Given this clamping policy, we observe that some traversals of a ray do not affect

occupancy probabilities of cells when those probability updates are limited by the thresholds (Fig. 2.4).

Before a new update, cells of the map can have occupancy states updated during previous time steps.

For updating the map with a new point cloud, the rays generated from the new sensor data traverse

and then update occupancy probabilities of the map. However, some of the traversals do not change the

occupancy states of the map. We aim to reduce such unnecessary traversals of a ray for achieving higher

update performance.
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(a) (b)

CcheckCtest

Ctest

C0

Figure 2.9: Examples of building and using our culling region. The blue outline represents a culling

region, and the fully free cells are shown as green cells. (a) Our test checks whether a cell Ccheck can be

inserted into the culling region or not, during the process to build the region. We insert the cell Ccheck

into the culling region because both two neighbor cells Ctest are in the culling region and Ccheck itself

is in the fully free state. (b) We show the updated map with new measurements, while the generated

culling region allows skipping the remaining traversals of the rays represented by the dotted lines.

Based on the observation, we define a culling region as a set of cells, where traversals from a cell

in the region to the sensor origin are unnecessary. By utilizing the property of the culling region, we

propose an efficient method to build and use the culling region for map updates without redundant

computations. Our culling region-based method consists of two steps per scan: 1) building the culling

region by using the occupancy states of the map as described in Alg. 3 (Fig. 2.9-(a)), and 2) updating

the map by utilizing the generated region that reduces the unnecessary traversals (Fig. 2.9-(b)). Note

that for supporting a dynamic environment, our approach efficiently constructs and re-initializes a new

culling region per scan.

Building the culling region. At the given map, we first initialize and construct the culling region

by checking whether a cell satisfies the properties of culling region or not. A naive approach would be

to consider a frustum generated from a cell to the sensor origin and to check whether all the cells of the

frustum are in the fully free states. Nonetheless, this naive approach may require a high computational

overhead, which can even lower down the overall performance at the worst case.

We therefore propose a method of identifying the culling region that incrementally utilizes our simple

tests, instead of the naive and time-consuming method. Our approach makes a culling region by incre-

mentally extending the region from the given CO cell containing the sensor origin at new measurements.

If the origin cell has a fully free state, we insert the cell into the culling region because the origin cell

guarantees the properties of the region. After inserting the origin cell into the culling region, we then

prepare to extend the region using our simple tests on the origin’s neighbor cells (line 2:4 in Alg. 3).

In our approach, we define a test cell, Ctest, to be one of the neighbor cells of the current cell,

Ccheck, which is located right outside of the current culling region. As a result, the test cell has the

shorter Manhattan distance to the origin cell than the distance between the current cell and the origin

cell. These cells are shown in Fig. 2.9 and thus we have: dist(Ctest, CO) ≡ dist(Ccheck, CO) − 1 and

dist(Ccheck, Ctest) ≡ 1. In other words, the neighbor cells Ctest for the test are candidate cells that a ray

passing through the current cell Ccheck can traverse in the next step toward the origin cell (Fig. 2.9-(a)).

According to the definition of test cells Ctest, we can have up to two and three test cells in the 2D and

3D cases, respectively (line 8 in Alg. 3).
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Algorithm 3 BUILD CULLING REGION

Require: CO, the cell containing a sensor origin

Ensure: CR, a culling region

1: CR = ∅, queue = ∅
2: if CO is fully free then

3: CR.insert(CO)

4: queue.push(neighbor cells of CO)

5: end if

6: while queue is not empty do

7: Ccheck ← queue.pop()

8: Ctest ← Compute Test Cells(CO, Ccheck)

9: if Ccheck is fully free ∧ all the Ctest are in CR then

10: CR.insert(Ccheck)

11: queue.push(neighbor cells except Ctest)

12: end if

13: end while

14: return CR

When Ccheck does not have a fully free state, we should update the cell Ccheck. When Ccheck is in

the fully free state, we check whether it can be included in the current culling region or not. For doing

that, we can simply check whether its test cells Ctest are in the culling region or not. When Ctest are in

the culling region, it is guaranteed that all the traversal from Ctest are unnecessary given the definition

of the culling region.

If the current cell Ccheck passes such simple tests (line 9 in Alg. 3), traversals of a ray from the

current cell to the origin cell are guaranteed to be unnecessary under the clamping policy. We therefore

insert the Ccheck into the culling region and then continue the simple tests on neighbor cells that have

not been tested (line 10:11 in Alg. 3). Finally we make the culling region efficiently through such simple

tests in the 2D as well as 3D cases. Note that the culling region constructed by our method has a convex

shape, surrounded by cells that do not have fully free states.

Updating the map using the culling region. Our approach uses the generated culling region

to remove the unnecessary traversals of rays. We make a ray traverse from its endpoint to the sensor

origin, which is different from the common direction of traversal. If a ray encounters a cell of the culling

region, our method can stop and terminate the remaining traversals from those cells to the sensor origin,

as shown in Fig. 2.9-(b). We therefore skip the updates for remaining traversals which do not affect

the occupancy probabilities of a map, and then only update the traversed cells outside of the culling

region. As a result, our approach achieves the high update performance with preserving the occupancy

representation of the map.

2.4 Results and Discussions

We mainly test our update methods and others on grid-based maps against two datasets, indoor and

outdoor datasets, used in OctoMap [9]. The indoor dataset consists of 66 scans captured in a corridor

(Fig. 2.1-(a)), and the outdoor dataset consists of 81 scans captured in a campus (Fig. 2.1-(b)). Scans

of the indoor and outdoor datasets have point clouds consisting of 89,446 points and 247,817 points on
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Figure 2.10: The average performance, Frame Per Second (FPS), in two scenes according to various

resolutions. Note that Ours represents the combination of our two methods using both super rays and

the culling region. The solid and dashed lines represent the performances of each method on GridMap

and OctoMap, respectively.

average, respectively. We first give the update performances of various methods on grid-based maps in

the indoor and outdoor scenes (Sec. 2.4.1), and then discuss the issues related to our methods in the

following sections (Sec. 2.4.3 and Sec. 2.4.4).

Furthermore, we test the grid-based maps as well as learning-based maps by using a new public

dataset, KITTI [30], to show the performance of updates as well as the accuracy of mapping (Sec. 2.4.2).

The KITTI dataset1 that we use consists of 395 scans captured by a 3D laser scanner and has 119,801

points in a scan on average (Fig. 2.1-(c)).

We first introduce implementation details of optimizing our methods, followed by comparisons over

prior methods. Note that in our earlier version of this work, we had tested super rays with the datasets

using a single core. In this chapter, we implement the test methods by applying parallel computation

with 12-threads to updating maps as well as generating super rays.

Implementation detail of super rays. Our super ray-based method has a pre-processing cost

induced by generating super rays, while it is designed for an efficient process. At the worst case, each

super ray can have only a single point, demonstrating only the overhead of our method without any

benefits. To prevent such a case, we use a threshold value, k, as the minimum number of points in a

cell for generating super rays. We set the value to 20 for all experiments and found that the threshold

is enough to handle the problem. The detailed discussion about super rays is shown in Sec. 2.4.3.

Implementation detail of the culling region. Our culling region-based method finds fully-free

cells on the updated map and checks whether those cells can be inserted into the culling region or not.

In the worst case in this process, we can insert some cells that do not trigger culling, and thus spend

unnecessary time on computing those cells. This redundant computation occurs outside cells of the

sensor’s field-of-view. Therefore we limit a range of the culling region using the input sensor origin and

the point clouds.

2.4.1 Performance comparison for update methods

In the following experiments, we compare our method against the 3DDDA and batch based update

methods on GridMap, the uniform grid map in 3D, and OctoMap, the octree-based occupancy map,

respectively. The overall performance of our methods includes all the processing time for updates such

1This dataset has the name, 2011 09 26 drive 0039, in the residential category
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Figure 2.11: The number of traversals on average of available scans in two datasets according to various

resolutions. The reported results are related to the performance graph, Fig. 2.10.
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Figure 2.12: The processing time that four different methods spend for each process on OctoMap with

0.1 m and 0.4 m resolutions. Overall, our methods give the high performance improvement compared to

the batching based method, despite the computation time to generate super rays or culling region.

as the generation time of both super rays and the culling region; we analyze the performance of each

component, super rays and culling region, of our method in the following sections. For all the experiments,

we use the same settings of resolutions and parameters used in the prior work [9]; locc = 0.85 and

lfree = −0.4, which are the log-odds values of occupancy probabilities to update cells of maps, and

lmin = −2 and lmax = 3.5, the log-odds values of the clamping policy.

We measure all the computation time of generating super rays, building the culling region, and

updating the maps for both indoor and outdoor datasets with various resolutions, and report the average

frame (scan) per second (FPS) computed with all the available scans in Fig. 2.10. As shown in the graph,

our method shows the highest performance in most of the tested cases. In the indoor scene, we achieve

7.7 times and 5.3 times faster performance compared to the 3DDDA based method on GridMap and the

batch based method on OctoMap, respectively. In the case using outdoor dataset, our method shows

the 1.9 times performance improvement for updates on average across resolutions, compared to the prior

works on both GridMap and OctoMap.

To analyze reasons for achieving such overall performance improvements, we also measure the num-

ber of traversed cells for updates. In the case of the tree structure, OctoMap, we count the number of

cells updated from the leaf to all the parent nodes. As shown in Fig. 2.11-(a), our proposed method

reduces the number of traversals by a factor of 13.0 times and 9.0 times on average in the indoor scene,
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compared to the 3DDDA based method in GridMap and the batch based method in OctoMap respec-

tively. In the outdoor scene, our method removes about half of traversals for updates compared to the

prior works, as reported by 2.0 times and 1.9 times reductions on average in GridMap and OctoMap

(Fig. 2.11-(b)). As a result, it enables a significant decrease in the update time of our method. The

detailed results are reported in Table 2.4.

Note that our method provides the same maps to those computed by the 3DDDA or batch based

updates, since our method does not sacrifice any accuracy of the grid-based maps. Additionally, we

also measure numerically how well our method updates occupancy probabilities compared to the prior

methods. For this purpose, we measure mean squared errors of occupancy probabilities between our

occupancy map and the map updated by the prior methods. We verify that the numerical errors turn

out to be zero across all the tested settings.

For the specific analysis of our methods, we report the time breakdown of processes for each method

on OctoMap with 0.1 m and 0.4 m resolutions in the indoor scene. Fig. 2.12-(a) represents that our

approach using the culling region shows the better performance than using super rays in the map with

the high resolution (0.4 m). As shown in the blue bars of the figure, the culling approach spends 63.9 ms

to generate the culling region, while the method using super rays reports less time 8.7 ms to generate the

super rays. However, the culling region achieves a much larger benefit, 211 ms decrease in the batching

process compared to the prior work, than 104 ms decrease of using super rays.

Unlike the case of the high resolution, the super ray-based method shows the better performance

than the culling region-based method for the low resolution case (Fig. 2.12-(b)). In this case, the culling

region achieves the 59 ms time reduction on the batching process despite the 0.9 ms time consumption to

generate the culling region. Using super rays, on the other hand, reduces 80 ms on the batching process

with 4.3 ms time spent on generating super rays.

As shown in Fig. 2.12, our combined method using both super rays and culling region shows the

best performance compared to the prior work and our methods using only one of them. Our two update

methods using super rays and culling region improve the update performance utilizing different types of

information. Super ray based updates consider geometric relations among point clouds in the current

scan. In other words, this method generates a super ray by grouping points associated with rays traversing

the same set of cells. On the other hands, the culling region based method utilizes occupancy states

of the updated map. This culling method skips rays whose updates on related cells are conservatively

identified to be unnecessary. As a result, these two different methods complement to each other and

combining them together shows the best performance.

2.4.2 Comparison of mapping algorithms

Recently, learning based approaches have been proposed to learn a correlation of occupancy ob-

servations and to predict occupancy states of unobserved regions. These methods handle the mapping

problem using classification and regression. In this section, we compare the performance in an aspect

of the update speed as well as the representation accuracy of the grid-based maps, OctoMap [9], ours,

and the learning-based maps, BGKOctoMap [28] and LARD-HM [19]. For the test, ours represents the

octree map using the combined method of super rays and culling region for updates. We use the public

KITTI dataset shown in Fig. 2.1-(c) for all points and Fig. 2.13-(a) for test points.

Each update method of map trains its representation with 80% of point clouds in 395 scans and

uses the remaining 20% points for testing the accuracy of mapping. We prepare the test points with

occupancy states using the remaining points for computing the representation accuracy; free points
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(a) Occupied test points (ground truth)

(b) OctoMap (83.6%, 2.19 sec/scan) [9] (c) Ours (87.1%, 1.10 sec/scan)

(d) BGKOctoMap (81.2%, 2.63 sec/scan) [28] (e) LARD-HM (86.0%, 3.59 sec/scan) [19]

Figure 2.13: On-the-fly occupancy mapping. These figures visualize the points that each map classifies

the test points to be occupied in our navigation scenario. We do not visualize the free points in this figure

to avoid cluttered visualization, but consider them to compute the representation accuracy. The color

represents the relative height of points, and the number in parenthesis is the representation accuracy and

the update speed of a map. Our method shows the fastest update performance resulting in the highest

representation accuracy.
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Figure 2.14: Map update timestamps. This figure shows timestamps, represented by red bars when

each map uses point clouds in a scan for updates. A faster method can process more scans. The timeline

of 395 scans captured by a 3D laser scanner at 10 Hz represents each of 10 scans as a black bar.

in the test set are selected randomly along rays traversing from the sensor origin to endpoints which

have occupied states. For computing the representation accuracy, we consider points in the test set

with occupancy probabilities less than 0.3 and larger than 0.7 values to have free and occupied states,

respectively. In such test setting, we measure the rate of correct prediction of occupancy states, i.e., the

rate of prediction showing the same occupancy states to the pre-computed states at all the test points,

and report the measurement as the representation accuracy for each map. Note that OctoMap and ours

use the 0.2 m resolution to represent the environment, and BGKOctoMap and LARD-HM use all the

same values of parameters reported in their corresponding papers.

The KITTI dataset we used in the test consists of raw point clouds captured by a 3D laser scanner

at 10 Hz and the recorded configuration of a vehicle that had driven in a residential area. Using

a playback tool bag on ROS (Robot Operating System), we can simulate a navigation scenario that a

vehicle navigates the region and builds a map using captured sensor data in real-time. On the simulation,

we let each map to discard point clouds of scans acquired during processing another scan, s, and process

an available scan right after finishing the update process of the scan s. The playback of this scenario

runs about 40 seconds because the KITTI dataset consists of 395 scans captured at 10 Hz.

In such a navigation problem, the ability of more frequently updating an accurate map can be

considered as a better reaction ability to avoid suddenly appeared obstacles. For demonstrating such

importance of real-time performance, we measure the time stamps of scans used for updating a map

during the simulation (Fig. 2.14), and report the representation accuracy of the updated map using the

test points (Fig. 2.13). As shown in Fig. 2.14, ours handles raw sensor data most frequently and uses

the most number of scans for updating the map compared to the other mapping algorithms. As a result,

the combined method using super rays and culling region deals with the number of scans by a factor of

two over the OctoMap.

Such a high update speed results in a high mapping accuracy since our map uses occupancy infor-

mation of many sensor measurements. Fig. 2.13 shows the visualization of test points that each map

classifies to have occupied states. As shown in the figure, our map has the highest representation ac-

curacy, 87.1%, over the other occupancy maps, thanks to the best performance on the update speed.

Compared to OctoMap, ours represents the environment in more details as reporting a high accuracy of

mapping. BGKOctoMap makes the sharp representation despite relatively a small number of scans. On

the other hand, LARD-HM shows the dense representation for occupied points. However, the map has a

relatively low accuracy of mapping for free states. In this test, our combined method shows the closest

update speed to the scanning speed of sensor compared to other methods. As a result, we achieve the

high representation accuracy, while utilizing a high number of point clouds in many scans.
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Figure 2.15: The relative performance to the case computed without using the threshold, i.e., k = 0.

A higher value indicates faster performance. We report the performance of batch-based updates using

super rays on OctoMap with various resolutions. We pick k = 20 for all the other tests.

Table 2.2: The number of generated super rays with different resolutions.

# of points Indoor [89,446] Outdoor [247,817]

Evaluation # of super rays # of points / super ray # of super rays # of points / super ray

0.1m 43605 2.1 186504 1.3

0.2m 25064 3.6 150453 1.6

0.4m 10668 8.3 102076 2.4

0.8m 3072 29.1 52906 4.7

1.0m 2073 43.1 40833 6.1

2.4.3 Analysis of super ray based updates

We analyze the performance of our super ray based updates in terms of two factors; the grouping

ratio depending on various resolutions and the user-defined threshold limiting to generate super rays.

Super rays improve the update performance by reducing the number of rays used for updating the

maps. To analyze such performance improvement, we measure the number of super rays with its grouping

ratio in Table 2.2 for the test settings. As can be seen in this table, our method shows varying grouping

ratios depending on resolutions. Intuitively a higher grouping ratio of our super rays leads the update

methods to reduce the number of traversals more, which results in the high performance improvement.

Overall, our super rays give the high performance improvement to the update methods despite the

computation time for generating super rays. They, however, show slightly lower performance gain in the

maps with a very high resolution, e.g., 0.1 m, due to a low grouping ratio and its overhead for generating

super rays in the high resolution. To lower the overhead, we use only a simple heuristic identifying based

on the factor, the number of points in a cell. We use a simple threshold value, k, as the minimum number

of points in a cell for generating super rays. In other words, for a cell with points less than k, we simply

consider each point in the cell as a super ray with weight 1. For the rest of other cells, we apply our
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Table 2.3: The number of unnecessary traversals occurred by batching and culling region based methods.

# of unnecessary traversals Indoor Outdoor

Evaluation Batch Culling region Batch Culling region

0.1m 2649K 473K 11.0M 9.8M

0.2m 1277K 230K 7.2M 6.1M

0.4m 608K 109K 3.8M 2.9M

0.8m 240K 39K 1.7M 1.2M

1.0m 215K 27K 1.3M 0.8M

method using super rays (Sec. 2.3.3). In practice, we found that 10 to 30 for k work reasonably well,

and pick 20 since this setting shows robust performance gain across different tested resolutions over the

case of k = 0 (Fig 2.15).

2.4.4 Analysis of culling region based updates

Our culling region improves the update performance by reducing the number of unnecessary traver-

sals that do not affect the occupancy probabilities of maps. To analysis such performance improvement,

we measure the number of unnecessary traversals processed in the prior work and our culling-region

based method, as shown in Table 2.3. The culling approach reduces a huge amount of such traversals,

83.4% on average, in the indoor scene. As a result, this method enables the performance improvement

for updating a map without sacrificing the occupancy information of sensor data. For example in the

test shown in Fig. 2.12-(a), the culling region consisting of 57,842 cells removes the 82.1% unnecessary

traversals accounting for 60.7% of entire traversals of the batch-based method. As a result, our culling

region-based method improves 1.7 times performance over the prior work. For the outdoor scene, our

method shows less decrease in the number of unnecessary traversals, 22.9% on average, and achieves the

1.2 times performance improvement on average.

23



Table 2.4: Overall time (FPS) including time spent on generating super rays and culling region (Proc.)

and time spent on updating maps (Update). The number within the parenthesis indicates the number

of traversed cells for updates.

Indoor Dataset

Resolution 0.1m 0.2m 0.4m 0.8m 1.0m

Evaluation FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

OctoMap + Batch 2.7 0
365.1

5.4 0
184.1

9.8 0
102.0

15.8 0
63.2

17.7 0
56.4

(3586K) (1663K) (861K) (458K) (400K)

OctoMap + Ours 4.9 74.3
128.2

18.0 14.7
40.9

54.5 5.5
12.9

138.0 3.4
3.9

164.3 3.7
2.4

(1241K) (382K) (122K) (35K) (22K)

GridMap + 3DDDA 2.9 0
343.2

5.8 0
172.6

10.8 0
92.7

18.3 0
54.7

21.0 0
47.7

(2972K) (1531K) (826K) (448K) (392K)

GridMap + Ours 6.9 63.4
82.2

23.0 10.8
32.7

69.0 3.3
11.2

184.8 2.1
3.4

246.9 2.0
2.1

(632K) (252K) (87K) (25K) (15K)

Outdoor Dataset

Resolution 0.1m 0.2m 0.4m 0.8m 1.0m

Evaluation FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

FPS
Proc. Update

[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

OctoMap + Batch 0.18 0
5427.7

0.59 0
1681.8

1.39 0
719.4

2.62 0
381.1

3.18 0
314.6

(55.4M) (17.4M) (7.3M) (3.6M) (2.9M)

OctoMap + Ours 0.19 89.1
5289.4

0.67 42.6
1441.3

2.06 21.2
463.6

6.11 14.4
149.3

8.61 13.3
102.8

(52.3M) (14.2M) (4.5M) (1.4M) (1.0M)

GridMap + 3DDDA 0.26 0
3817.4

0.69 0
1441.3

1.43 0
698.7

2.77 0
361.4

3.35 0
298.8

(25.2M) (12.7M) (6.5M) (3.4M) (2.8M)

GridMap + Ours 0.27 37.0
3672.2

0.84 21.5
1175.9

2.29 12.2
423.9

6.44 8.2
147.1

9.38 7.6
99.0

(22.2M) (9.6M) (3.7M) (1.3M) (0.8M)
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Chapter 3. AKIMap: Adaptive Kernel Inference for Dense

and Sharp Occupancy Grids

3.1 Introduction

(a) Fixed kernel inference (b) Adaptive kernel inference

Figure 3.1: Comparison between two different types of kernel inference models in occupancy mapping.

(a) shows the fixed kernel inference using isotropic estimation and (b) represents our adaptive kernel

inference on the occupancy samples. Outlines of the circles or ellipses represent each support region of

kernel estimation at the sample. We denote the occupied and free states by the red and green colors,

respectively, and the object is colored by the gray.

LiDARs and laser scanners can capture a sparse point cloud representing partial occupancy observa-

tions of an environment. Regression-based approaches such as [13,18] utilize the correlation of occupancy

observations for representing the occupancy state of the environment densely. These maps predict the

occupancy probabilities and update their occupancy representations of the environment whenever the

sensor captures a new point cloud. However, a well-known drawback is a high computation overhead

when applying the approaches to on-the-fly systems. Recently, Doherty et al. [29] proposed a Bayesian

non-parametric kernel inference model, which estimates occupancy with a reduced computational cost.

The model shares the same isotropic bandwidth across the kernel shown in Fig. 3.1-(a) in order to

achieve fast processing speed. Nonetheless, we found that using such fixed kernel can cause a false occu-

pancy representation or unsupported region, especially when the distribution of occupancy observations

is sparse and highly nonuniform.

In this chapter, we propose a new adaptive kernel inference model, AKIMap, which reconstructs

a sharp, but dense occupancy grid, while handling the non-uniformly distributed sparse occupancy

observations. As our main technical contribution, we leverage an anisotropic kernel in robust and efficient

kernel inference model for occupancy predictions of the environment (Fig. 3.1-(b)). In our approach, the

kernel shape varies locally so that occupancy boundaries can be estimated appropriately. Specifically, our

adaptive method optimizes the kernel shapes according to the distribution of occupancy observations. In

addition, we present a two-stage optimization performed per kernel locally for the real-time performance

of occupancy mapping.
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Table 3.1: Summary of notations

x ∈ R3 Observation point

y ∈ {0, 1} Occupancy label; free state: 0, occupied state: 1

{xi, yi} i-th occupancy sample

cm ∈ R3 Center point of m-th cell

Hi Kernel bandwidth matrix of {xi, yi}

Σi Covariance matrix of {xi, yi}

si Bandwidth scale; Hi = siΣi

k(·) Kernel function

We first demonstrate the robust occupancy estimation of our approach using two synthetic datasets

for numerical performance comparison. We compare our adaptive approach with the state-of-the-art

techniques [28, 29] that employ an isotropic inference. Given the equal amount of sensor data as well

as the equal time budget, our approach shows outstanding performance in the occupancy estimation

over the tested methods. This result is mainly achieved by our simple, yet effective anisotropic kernel

inference. We also test our method in a real environment. For on-the-fly occupancy mapping, our method

shows an incremental reconstruction of the dense as well as sharp occupancy representations from noisy

point clouds. Furthermore, we evaluate the benefits of the proposed method compared to the orthogonal

approaches using anisotropic Gaussian distributions.

3.2 Backgrounds

Our goal is to predict an occupancy probability at a query region from new sparse occupancy

observations. To estimate a high-quality occupancy prediction, we adapt the well-established multivariate

kernel estimator so that its kernels can be optimized in a data-driven way. The mathematical framework

of the kernel estimator is discussed in this section, followed by our novel adaptation for occupancy

mapping in Sec. 3.3. Table 3.1 summarizes the main notations used in this chapter.

3.2.1 Multivariate Kernel Estimator

Let x ∈ Rd and y ∈ R be a d-dimensional input point and its response, respectively, which is an

observation pair in a multivariate system, i.e., d > 1. Given the observations, the Nadaraya-Watson

estimator [34,35], one of the well-known kernel estimators, predicts an output, yq, at a query point, xq,

as the conditional expectation:

E[yq|xq] =

∑ |Hi|−
1
2 k(xq,xi,Hi)yi∑ |Hi|− 1
2 k(xq,xi,Hi)

, (3.1)

where k(·) is a kernel function that defines the weight of the response yi from the nearby input sample

xi to the query point xq. The bandwidth matrix Hi, which is a positive definite matrix, controls shape

of the kernel function.
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In the 3-D occupancy mapping, let x ∈ R3 be a point in 3D space, and y ∈ {0, 1} be an occupancy

state, where 0 and 1 represent a free and an occupied state, respectively. We define an occupancy sample,

{xi, yi}, as an i-th observation pair with the occupancy state in our algorithm; we denote such occupancy

samples as occupied sample or free sample depending on their observations of occupancy states. Each

sample is associated with a kernel bandwidth, Hi, adaptive to the distribution of occupancy samples, as

shown in Fig. 3.1.

3.2.2 Motivation

It is well-known that in the multivariate case, the accuracy of kernel inference highly depends on the

bandwidth matrix Hi [36], as shown in Fig. 3.1. Unfortunately, the crucial parameter, bandwidth matrix,

was not fully optimized for the reconstruction of the occupancy map. For example, the recent kernel

inference method [29] used an identity matrix with a fixed scale for the bandwidth matrix. This isotropic

kernel estimation is simple, but its estimation quality can be degraded when the map is reconstructed

from samples on non-uniformly distribution (e.g., representing accurate surfaces of objects). Fig. 3.1-(a)

illustrates this scenario. The fixed kernel inference produces dense estimation results nearby the sensor

origin, but fails to estimate some occupied parts along the object’s surface or does not preserve the

boundary between occupied and unoccupied parts. We observe that this limitation is mainly caused

by the isotropic kernel estimation, which does not take account for the non-uniform distribution of the

occupancy samples adequately.

To mitigate this problem, we optimize the bandwidth matrix Hi at each sample according to the

distribution of the samples so that the occupancy state can be estimated robustly given a non-uniformly

distributed sample set. As shown in Fig. 3.1-(b), our approach adapts the size and orientation of the

anisotropic kernels along the object surface by changing the matrix Hi, and thus preserves the sharp

occupancy boundary well, compared to the isotropic approach.

3.3 Adaptive Kernel Inference for Grid-based Occupancy Map

3.3.1 Overview of Our Approach

To reconstruct a high-quality occupancy grid with dense, yet sharp properties from sparse data

points with noise, we utilize the multivariate kernel estimation (Sec. 3.2) in a data-driven way for our

problem with the occupancy grid.

We first introduce procedures of our mapping framework, AKIMap, as depicted in Fig. 3.2 (Sec. 3.3.2).

We describe a simple policy to extract observations about occupancy states from the sparse data as inputs

to our inference model. Based on the distribution of the occupancy observations, our method optimizes

the bandwidth matrix Hi so that the occupancy states can be estimated robustly using our anisotropic

kernel estimation (Sec. 3.3.3). For efficient runtime updates of the occupancy grid, our adaptive kernel

inference estimates and accumulates the occupancy states in cell centers of the occupancy grid incre-

mentally (Sec. 3.3.4). Once a query point is given, we identify a cell containing the point and utilize its

estimation information. Note that we depict the 2D examples in the figures for the simple description,

but our method operates in the 3D environment.
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(a) Occupancy sampling

+

+ +

+
+
+

(c) Kernel estimation update

+
+ +

Covariance Refined
1) 1) 1)

2)

2) 2)
+

(b) Adaptive bandwidth selection

Figure 3.2: Framework of Adaptive Kernel Inference Occupancy Grid (AKIMap). (a) represents

occupancy samples gathered from the sparse sensor data. In (b), each blue box represents a search

region for finding neighbor samples of each kernel center. As an initial kernel bandwidth, our method

computes a covariance matrix from the neighbor samples having the same occupancy state to the kernel

center. We then refine the bandwidth matrix adaptive to the local distribution of positive and negative

neighbor samples. (c) Finally, our model incrementally estimates and accumulates its information at

cell centers. Once a query point (blue X mark) is given, the cell containing the point is used for final

occupancy prediction.

3.3.2 Kernel Inference for Occupancy Grid

The kernel inference, Eq. 3.1, requires the occupancy samples and their bandwidth matrices to

estimate an occupancy state at a query point. However, it is intractable to store all of the data to

the map during the on-the-fly mapping. Concerning this issue, a recent work [29] proposed a mapping

framework that incrementally updates the kernel estimations of cells in the occupancy grid.

We extend the kernel inference framework with a fixed, isotropic bandwidth into the inference

using our adaptive bandwidth matrices. Given the Bernoulli likelihood p(yi|θm) of occupancy probabil-

ity θm and its conjugate Beta prior Beta(α0, β0), the posterior at m-th cell of the framework follows

Beta(αm, βm) expressed as:

αm = α0 +
∑
|Hi|−

1
2 k(cm,xi,Hi)yi, (3.2)

βm = β0 +
∑
|Hi|−

1
2 k(cm,xi,Hi)(1− yi), (3.3)

where α0 and β0 originate in the Beta prior; setting the both values to 1 makes an uniform prior. Two

parameters of this posterior, αm and βm, represent the accumulated kernel estimations from occupied

and free samples, respectively. The maximum a posterior (MAP) of the occupancy at the cell then

becomes:

θMAP
m =

αm
αm + βm

≈
∑ |Hi|−

1
2 k(cm,xi,Hi)yi∑ |Hi|− 1
2 k(cm,xi,Hi)

, (3.4)

where cm is a center point of the cell. Note that the MAP, Eq. 3.4, approximates the multivariate kernel

estimation, Eq. 3.1. Furthermore, the kernel estimations at the cell enable the efficient incremental

updates and occupancy queries that we discuss in Sec. 3.3.4.
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Kernel Function. For our mapping problem, we define the kernel function as a bounded ker-

nel, as an unbounded one requires updating all cells in the map, which is computationally prohibitive.

Specifically, the sparse kernel [37] we choose is as follows:

k(cm,xi,Hi) ={
2+cos(2πr)

3 (1− r) + 1
2π sin(2πr) if r < 1,

0 if r ≥ 1,

(3.5)

where r =
√

(cm − xi)TH−1i (cm − xi).

Occupancy Sampling. Our approach extracts the occupancy samples {xi, yi}i=1:N from sparse

sensor measurements captured by sensors. A point cloud data is simply observations about the occupied

state at the points sampled from the surrounding objects. Therefore, we use the sensor data directly

as the occupied samples. On the other hand, we can observe the free space on a sensor ray traversing

from the sensor origin to each hit point of the point cloud. Specifically, our method randomly selects

one free sample per sampling distance, e.g. 0.5 m, on sensor rays, similar to ones used in the prior

approaches [18, 19]. The random free samples on the rays prevent that our adaptive shapes of kernels

are over-fitted to the sampling patterns, instead of the distribution of free space, occurring in a uniform

sampling.

3.3.3 Adaptive Bandwidth Selection

In this section, we propose an adaptive technique that varies the kernel bandwidth matrix Hi of

each occupancy sample for computing the occupancy map robustly. Our bandwidth selection reflects

the following high-level observations to the adaptive bandwidth. 1) If the kernel center and its neighbor

sample have the same occupancy state, we could observe another sample sharing the state in the space

between them. 2) Otherwise, we could have a low chance of observing a new sample having the state of

the kernel center.

A bandwidth matrix in a 3D environment can be composed of six-parameters: three for a rotation

matrix and the others for a length scale of each rotated basis. Ideally, one can opt to optimize all the

parameters of the kernel bandwidth. However, the optimization with a large number of parameters

requires a huge amount of samples. Since a few occupancy samples from sparse sensor data are available

in our mapping system, such optimization can be unstable due to the curse of dimensionality.

We therefore propose an efficient, yet robust way to optimize the bandwidth matrix Hi with a

reduced number of parameters. Our method utilizes a covariance matrix Σi so that the kernel can be

adapted per sample according to its local distribution of nearby samples. Using the covariance matrix

as an initial guess, our bandwidth selector then finds the best scalar scale ŝi to compose the bandwidth

Hi = ŝiΣi.

In the first step, our method computes the covariance matrix Σi of an occupancy sample {xi, yi}.
We retrieve a set of the neighbor occupancy samples {xj , yj}j=1:M of the kernel center xi within a search

box, i.e., the one colored by blue in Fig. 3.2-(b). Our approach computes the covariance matrix only from

the positive neighbors, i.e., the neighbor samples having the same occupancy states with the occupancy

sample {xi, yi} under the kernel estimation. Such covariance leads to a scaled and biased shape of

the anisotropic kernel toward its positive neighbors. For example, the covariance of occupied samples

makes the kernel estimation follow the local surface, which results in the sharp occupancy boundary

(Fig. 3.2-(b)).

29



(a) (b) (c)

Decrease IncreaseCovariance

Figure 3.3: Illustration of our adjustment process of kernel shapes with neighbor occupancy samples.

(a) represents the initial kernel shape using the covariance matrix. The negative neighbors in (b) decrease

the scale, while the positive neighbor in (c) increases it. We find the best scale given the kernel shape of

the covariance matrix by minimizing the estimation errors, Eq. 3.7.

While it is very efficient, a kernel estimation only using the covariance can be incomplete. For an

example shown in Fig. 3.2-(b), there could be false estimation due to negative samples within the kernel

support, once we do not consider them for computing the covariance matrix. Therefore, our approach

refines the bandwidth matrix by re-scaling the covariance matrix to reduce such errors by considering

such negative samples, while preserving the kernel shape.

At a high-level, our method finds a bandwidth scale si to remove the error caused by the false

estimation, while keeping the kernel estimation towards the positive samples (Eq. 3.7). To achieve our

goal, we design an estimation error of the kernel at a neighbor sample point, and then minimize it by

an optimization technique. The false estimation at a negative neighbor, if existing, is caused by a kernel

signal even reaching the negative neighbor, as shown in Fig. 3.3-(b). In our bandwidth optimization

process, the negative neighbor shrinks the estimation range by pushing the kernel into its center. In

contrast to the negative case, suppose a positive neighbor out of the kernel support, which causes no

signal at the positive neighbor. Such positive neighbor in our bandwidth refinement prevents the kernel

estimation from having too small range, shown in Fig. 3.3-(c).

Specifically, we express a target estimation signal t(·) for computing the estimation error at the

neighbor sample {xj , yj}:

t(·) =

{
k(xj ,xi,Σi) if yi ≡ yj ,

0 if yi 6≡ yj .
(3.6)

At the negative neighbor, we set its target signal to be minimum signal value, i.e. 0. On the other hand,

we set its target estimation signal at the positive neighbor to be a kernel value using the covariance

matrix.

Given our definition of the target estimation signal and the estimation errors, our bandwidth refine-

ment method finds the best bandwidth scale ŝi based on M neighbor samples within the search region:

ŝi = argmin
si

|siΣi|−
1
2

2

M∑
j=1

(t(·)− k(xj ,xi, siΣi))
2
, (3.7)

where |siΣi|−
1
2 is the signal weight of kernel estimation in Eq. 3.4. Based on the computed scale, we

finally select the refined kernel bandwidth Hi = ŝiΣi for the i-th sample. Note that as an alternative, we

tested a separate regularization term with negative samples, but found that the aforementioned approach

works well in an efficient manner.
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3.3.4 Estimation Update on Occupancy Grid

Our framework aims to support the incremental updates of the occupancy map during on-the-fly

mapping. The m-th cell of our map holds two kinds of values, αm (Eq. 3.2) and βm (Eq. 3.3). Given

the N occupancy samples with their bandwidth matrices at a time step t, these equations can be re-

formulated to the update rule that accumulates the adaptive kernel estimations during the time steps

from 1 to t:

α1:t
m = α1:t−1

m +

N∑
i=1

|Hi|−
1
2 k(cm,xi,Hi)yi, (3.8)

β1:t
m = β1:t−1

m +

N∑
i=1

|Hi|−
1
2 k(cm,xi,Hi)(1− yi). (3.9)

In a query step, we can achieve an occupancy probability of a cell based on Eq. 3.4 with these two

equations, in a lazy evaluation manner for our adaptive kernel inference.

3.4 Results and Discussions

We have evaluated our approach using two synthetic scenes quantitatively and qualitatively, and

have tested it to on-the-fly mapping scenario in the real environment. Specifically, we have compared our

approach, AKIMap, with BGKOctoMap [28] and BGKOctoMap-L [29], which are the state-of-the-art

techniques that rely on an isotropic kernel inference with a fixed bandwidth.

In all the following experiments, the parameters for BGKOctoMap and BGKOctoMap-L (e.g., the

scale and the signal weight of isotropic kernel) were set by the values recommended in the previous

papers. Note that the scales and signal weights of our anisotropic kernels are automatically adapted

according to the distribution of the occupancy samples.

We set the sampling distance for free observations to 0.5 m used in BGKOctoMap and make one free

sample per the sampling distance randomly. For the search range of neighbor samples, we can simply

use a fixed search range of 0.5 m, the sampling distance. However, for a higher computational efficiency

without degrading the estimation accuracy, we found that we can use a smaller search range near the

sensor origin, since as the observed data is close to the sensor origin, there is a higher chance that the

data is densely populated. Based on this simple observation, we linearly decrease the search range from

the maximum one of 0.5 m at the maximum sensor range to 0.05 m, the voxel size, at the sensor origin.

3.4.1 Performance Comparison

To compare our method with the state-of-the-art techniques, we have used the two scenes, “struc-

tured” (Fig. 3.5) and “unstructured” (Fig. 3.6), which were also used in the prior work [28]. Each virtual

environment has dimensions of 10.0×7.0×2.0 m in the Gazebo simulator. Both scenes consist of 12 scans

captured at four different locations, and each scan has 3500 points. Fig. 3.5-(a) is the ground truth for

the benchmark scene. In this test, we aim to build the occupancy grid at a high resolution, i.e., 5 cm

cell size, for observing the dense and sharp characteristics of the tested maps.

To evaluate our method quantitatively, we report the Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC) curve and the Mean Squared Error (MSE) of occupancy probability.

The ROC curve shows the mapping ability for representing occupancy states given various occupancy

thresholds; a higher AUC value represents higher robustness of the inference model. The MSE value of
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Table 3.2: Top rows of each dataset show the equal-time comparison w/ varying usages of the data, and

bottom rows show performance as we use all the data. Bold numbers represent the best performances

in the comparison.

Structured dataset

Name (Usage) AUC MSE
Time Accuracy

[sec] (occupied) (free)

AKIMap (75%) 0.912 0.063 2.76 0.678 0.981

BGKOctoMap-L (100%) 0.892 0.109 2.82 0.476 0.981

BGKOctoMap (90%) 0.875 0.120 2.81 0.377 0.979

AKIMap (100%) 0.937 0.060 3.99 0.678 0.983

BGKOctoMap-L (100%) 0.892 0.109 2.82 0.476 0.981

BGKOctoMap (100%) 0.881 0.119 3.06 0.378 0.979

Unstructured dataset

Name (Usage) AUC MSE
Time Accuracy

[sec] (occupied) (free)

AKIMap (90%) 0.852 0.102 2.58 0.664 0.965

BGKOctoMap-L (100%) 0.831 0.133 2.54 0.502 0.965

BGKOctoMap (95%) 0.816 0.145 2.52 0.391 0.962

AKIMap (100%) 0.855 0.101 2.86 0.665 0.966

BGKOctoMap-L (100%) 0.831 0.133 2.54 0.502 0.965

BGKOctoMap (100%) 0.817 0.145 2.61 0.391 0.962

the occupancy map represents the average estimation error of the cells compared to the ground truth

map. We report all the results on average in 10 experiments because our work uses a random approach to

make free samples. Note that we do not show the standard deviation of performances explicitly, simply

because the maximum variation, 0.002, of all the performance metrics is too small.

We first see the performances of different methods using all the sensor measurements in the struc-

tured and unstructured environments. As shown in the bottom rows of Table 3.2, the proposed work

reports the highest AUC and the lowest MSE compared to the other methods. For example, our method,

AKIMap (100%), shows the robustness of occupancy estimation as reporting 0.937 AUC and 0.060 MSE

in the structured scene.

These different methods take varying running time, and we thus see how they behave given the same

running time budget. For the equal-time comparison, we decrease 5% of sensor data until the processing

time of a mapping approach becomes similar to the time of the fastest one. For this reason, we denote

the usage of sensor measurements in all the reports by the number in parenthesis next to the name of

each mapping algorithm; e.g. (75%) means that its map uses 75% of the data, for reconstructing the

occupancy representation.

For the structured dataset, we pick 2.8 s that BGKOctoMap-L can process all the observation data.

However, our method and BGKOctoMap can process only 75% and 90% of the data, due to their lower

running performance, compared to BGKOctoMap-L. Nonetheless, our method shows the highest AUC

result, thanks to its high estimation accuracy (Table 3.2). For the unstructured dataset, we pick 2.5 s as
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Figure 3.4: Equal-time comparison. These graphs represent the ROC curves in structured (a) and

unstructured (b) scenes of different methods running in the same time budget, except AKIMap (100%),

as we vary the occupancy threshold. The number within the bracket is the AUC score of the map.

the running time budget, since BGKOctoMap-L can process all the data given that budget. In this test

data, ours achieves the highest estimation accuracy given the same running time. Fig. 3.4 shows ROC

curves and their AUC values of the mapping approaches in the structured and unstructured environments

in the equal-time comparison.

In this test, our approach outperforms the state-of-the-art methods, although it uses less data than

the other methods. Our work shows 0.937 and 0.855 AUC scores in the structured and unstructured

scenes, respectively. The top rows of Table 3.2 show the reconstruction errors of different occupancy

maps in the equal-time comparison. Similar to the AUC scores, our approach produces the lower MSE

scores, 0.063 and 0.102 for the two different scenes. These improvements are achieved mainly thanks to

our anisotropic model, which allows for estimating the occupancy states robustly.

3.4.2 Qualitative Analysis

We visualize mapping results of the prior experiment using the occupancy threshold of 0.5 at the

equal time comparison. Fig. 3.5 and Fig. 3.6 show 3-D visualizations of the various maps for the struc-

tured and unstructured scenes, respectively. We only draw the occupied cells classified by the threshold,

and the color indicates the elevation of the cell. In addition, the 2D grayscale image located in the

left-bottom of each sub-figure shows the occupancy estimations of the cells at a particular region of a

specific height, 1.0 m. In this analysis, we report the accuracy scores of occupied and free representations

of various methods (Table 3.2).

The isotropic inference models (Fig 3.5-(c) and Fig 3.5-(d)) produce dense estimation results given

the original, sparse sensor measurements shown in Fig 3.5-(b). These maps, however, do not robustly

estimate occupied regions far from the sensor origin, where the data is more sparse than others. On the

other hand, our anisotropic model makes such regions (e.g., wall) to have the occupied state thanks to

our adaptive bandwidth selection guided by the local distribution of samples, as shown in Fig. 3.5-(e).

Furthermore, our method reconstructs the occupied space more accurately than the previous tech-

niques. As shown in the 2D images of Fig. 3.5-(c) and (d), the isotropic kernel models tend to produce

over-estimation results for the occupied space. On the other hand, our anisotropic kernel maintains the

sharp representation for the occupied region, shown in Fig. 3.5-(f), by adapting its kernel shapes locally

according to the distribution of the sensor data.
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(a) Ground truth

0.0 m

2.0 m

1.0 m

(b) Raw sensor data

(c) BGKOctoMap (90%) - 0.875 AUC (d) BGKOctoMap-L (100%) - 0.892 AUC

(e) AKIMap (75%) - 0.912 AUC (f) AKIMap (100%) - 0.937 AUC

Figure 3.5: Occupancy mapping results in the structured scene. We visualize the occupied cells classified

based on the occupancy threshold (0.5), where the color represents the elevation from 0.0 m to 2.0 m.

The gray-scale 2D image located in the left-bottom represents the occupancy probabilities of cells of a

L-shape at the 1.0 m height; colors from white to black represent occupancy probability from the free to

occupied states. The number in each parenthesis indicates the amount of used sensor measurements for

each algorithm.
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(a) Ground truth (b) BGKOctoMap (95%) - 0.816 AUC

(c) BGKOctoMap-L (100%) - 0.831 AUC (d) AKIMap (90%) - 0.852 AUC

Figure 3.6: Occupancy mapping results using the same time budget in the unstructured scene. These

figures show the occupied cells of the different algorithms, where the color indicates a height value.

As a result, shown in Table 3.2, the proposed method shows the highest accuracy of occupied repre-

sentation, 0.678 (structured) and 0.664 (unstructured), compared to the prior, isotropic estimations. This

result shows that our work based on adaptive kernel inference is able to handle the sparsely distributed

data where its density varies in a non-uniform manner.

3.4.3 On-the-fly Mapping Scenario

We have tested ours and the prior work, BGKOctoMap-L, in the real environment (74.4 × 49.2 ×
2.0 m). Fig. 3.7 shows the occupied cells of maps with 5 cm voxel size, in which we reconstruct using a

mobile robot that equips with LiDAR and IMU sensors. While the robot roams a corridor in 163 seconds,

we find its pose in real-time by a localization method [38] and update the occupancy map from sensor

measurements on-the-fly. The LiDAR sensor provides a raw point cloud at 10 Hz, but the mapping

approaches use a new sensor data right after finishing their map updates. Due to the computational

cost, these maps discard the sensor data acquired during the map updates.

In this test, we set the maximum sensing range to 10.0 m and the others to be the same as the

settings used in the synthetic datasets, e.g., the maximum search range of our approach is set to follow

the sampling distance, 0.5 m. The whole process of on-the-fly mapping can be shown in the presentation

of this dissertation defense.
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(a) Corridor scene - AKIMap

BGKOctoMap-L

AKIMap

(b) Enlarged visualization

Figure 3.7: On-the-fly mapping result using a mobile robot. The dotted line in (a) indicates a trajectory

of the robot, and the red and blue boxes show enlarged regions. The image associated with the black

box represents the visualization from the follower’s viewpoint. As shown in these boxes, ours represents

the more sharp and dense wall and ground surfaces in the corridor than the prior work.

In the experiment, ours and the prior work use 130 and 134 scans for building and updating the

occupancy maps, respectively. Both approaches show the dense occupancy representations for the envi-

ronment, as shown in Fig. 3.7, but our method produces the sharper occupancy states compared to the

prior method.

In Fig. 3.7, we enlarge the 3D visualizations at two regions within the red and blue boxes, and

represent the occupancy probabilities associated with the regions as the 2D grayscale images. In the

region within the red box, ours and the prior work show the dense reconstruction of an area in the

corridor. But the proposed work makes the more sharp representation of the wall’s surface compared to

the prior work. In the case of the blue box, the prior work cannot reconstruct the wall precisely, since

it does not consider to adapt its kernel shape according to the density of data. On the other hand, ours

enables to reconstruct the sharp and dense occupancy representations given the environment, and this

is achieved mainly by our anisotropic kernels that take account for the local distribution of samples.
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(a) GMM-OM (100%)

Structured dataset

GMM-OM AKIMap
(100%) (100%)

Time [sec] 90.91 3.99
- training 32.86 1.13
- updating 58.05 2.86

AUC 0.939 0.937
MSE 0.065 0.060

(b) Performance comparison

Figure 3.8: Efficiency comparison of bandwidth optimization. This figure (a) shows the visualization

of 70-component GMM-OM in the structured scene, and the table (b) shows the computational perfor-

mances when two methods report the similar AUC and MSE scores. In the test, our approach using

local bandwidth optimization processes much faster than the prior work based on global approach.

3.4.4 Analysis of Adaptive Bandwidth Selection

Efficiency of local bandwidth optimization. Our adaptive bandwidth selection uses a local

optimization strategy for the computational efficiency and due to the curse of dimensionality, as we

mentioned in Sec. 3.3.3. Recently, a method using Gaussian mixture model (GMM) [39] was proposed

to reconstruct an occupancy map, as an alternative approach of global bandwidth optimization. A

covariance matrix of GMM controls the shape of each Gaussian distribution, like our anisotropic kernel

bandwidth. This work, however, optimizes the covariance matrices globally with the other parameters

such as means and weights of the Gaussian components, where the number of components is much less

than the occupancy samples. In this section, we test the computation efficiency of our local adaptation

of the bandwidth matrix, comparing with the global optimization approach, GMM-OM.

Fig. 3.8 shows the GMM-OM in the structured scene when it makes 106 resamples from 70 component

GMM. For comparing the computational efficiency, we choose the number of components at the setting

that GMM-OM reports similar AUC and MSE scores with ours, AKIMap (100%) shown in Fig. 3.5-(f).

For the number of resamples, we set it to the value recommended in the paper.

In this setting, the map reports 0.939 AUC and 0.065 MSE, while the global optimization for

training the GMMs takes 32.86 seconds, shown in Fig. 3.8-(b). On the other hands, for achieving

the similar representation performances, our bandwidth optimization takes 1.13 seconds, and finally

we reconstruct the map within 4 seconds. These results show that our local adaptive method is more

computationally efficient than the GMM-OM based on the global approach, while producing the robust

occupancy representation through the anisotropic kernel inference. Furthermore, we observed that the

larger number of components of GMM requires much higher computational cost, although it can improve

the representation quality. This implies that in our approach, the bandwidth optimization based on

global manner can be intractable in on-the-fly mapping, since our model has the much larger number of

bandwidth parameters than the GMM.

Effectiveness of bandwidth optimization. Normal distributions transform (NDT) methods [3,

40] have been studied for point cloud registration with memory efficiency. These approaches model the

object’s surfaces as a set of Gaussian distributions. Furthermore, to support modeling static as well

as dynamic objects, the variants of NDT-based methods [41, 42] adopt occupancy information. Each
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(a) Ground truth (b) ONDT - 0.528 F1 (c) AKIMap - 0.682 F1
0.451 Pre | 0.636 Rec 0.678 Pre | 0.686 Rec

Figure 3.9: Comparison of geometry reconstructions. These figures show the reconstruction results for

occupied space in the structured scene, where the color represents the relative height of the 3D structure.

In each sub-figure, the left blue box shows a highlighted region, and the right black box visualizes the

binary occupancy states representing a 2D L-shape at the 1.0 m height. The black and white colors

indicate the occupied and non-occupied states, respectively.

Gaussian distribution uses its covariance matrix to represent the object’s surface robustly, similar to our

adaptive kernels of occupied observations. Therefore, the NDT-based approaches can reconstruct the

dense geometry representation of the environment from sparse point clouds. In this experiment, we test

the robustness of geometry reconstruction, comparing ours with the NDT-based occupancy map, ONDT.

We use one of the recent NDT-based maps, ONDT [42], with the default parameters provided in

its source code. For example, the method uses a 1.0 m voxel size to have one Gaussian distribution

per cell and a 0.169 confidence threshold to determine an object’s surface. Since this model aims to

estimate the observability of objects, not occupancy state, we measure the reconstruction robustness of

the environment’s geometry; precision (Pre), recall (Rec), and F1 scores.

Fig. 3.9 shows the reconstruction results of ONDT and ours on the 5 cm grid cells. Our method re-

ports the 0.678 precision and 0.686 recall scores in this test, while ONDT shows 0.451 precision and 0.636

recall values. These numerical results show that ours can reconstruct the structure of the environment

more sharply and densely compared to the prior method. In addition, the enlarged visualizations in the

boxes represent the qualitative reconstructions of object’s surface. In the detailed views, we observe that

the objects’ representation of ours is sharper than the ONDT, reporting the remarkable improvement

in precision. This result shows the effectiveness of our bandwidth optimization process mentioned in

Sec. 3.3.3. Each initial kernel bandwidth becomes a covariance matrix in the optimization. However, we

select the best bandwidth scale to avoid the over-estimation of occupied space by free samples. Thanks

to the refinement process, our method achieves the outperforming robustness of geometry reconstruction

compared to the prior method.
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Chapter 4. Implicit LiDAR Network: Resolution-free LiDAR

for Robust Occupancy Map Representation

4.1 Introduction

Ground truthInput

LIIF Ours

Figure 4.1: LiDAR super-resolution results. This figure shows the reconstruction of dense LiDAR

points using the sparse input, where color represents relative elevation of structures.

Various range-based sensors such as LiDAR and laser scanner have different hardware specifications,

and thus capture point clouds having various density levels. The density of the sensed point cloud can

affect the performance of many robotics/vision tasks such as object detection, recognition, tracking, and

motion planning. In the occupancy mapping problem, the robustness of occupancy representation is

susceptible to the density of the sensor data, i.e., the resolution of the LiDAR range image. In this

chapter, we aim to improve the density of sensed point cloud for robust occupancy representation.

Increasing the sensing resolution takes longer capture time, much more energy consumption, and

also higher cost. Hence, super-resolution techniques generating a higher resolution image from a lower

resolution one have been actively studied and applied to LiDAR scan data. The advance of deep learning

has made significant improvements in super-resolution techniques. The typical approach in previous

work [43–46] is to build an autoencoder-style architecture based on convolution/deconvolution layers.

Although this approach recovers fine details well, its network is constrained to produce the output image

with a specific target resolution used in training and thus restricts its applicability to diverse systems.
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Figure 4.2: Architecture comparison between LIIF and ours. This figure summarizes the difference

between two implicit networks - value prediction (LIIF) and weight prediction (Ours), where θ indicates

the learning parameters of network. Our method predicts the interpolation weight wt instead of depth

value rt, resulting in the robust super-resolution shown in Fig. 4.1.

In light of the recent success of learning an implicit function for 3-D shape reconstruction [47–51], Chen

et al. [52] first proposed to view an image as continuous 2-D data and predict an implicit function that

returns color for a given query point. Their method, called Local Implicit Image Function (LIIF), showed

how a super-resolution network could be trained without specifying the output resolution, while even

achieving better results than the autoencoder-style networks.

Although LIIF can be directly applied to upscale LiDAR, the detailed idea has some problems,

particularly when used for the LiDAR range images. LIIF represents the implicit function as a linear

interpolation of neighbor pixels, but instead of the pixel values (depths in our case) in the input, predicted

depth values are used. Thus, it turns out that the network does not fill the missing detailed information

in the super-resolution but creates a new image looking similar to the input, which makes the training

very time-consuming. Also, the problem becomes a regression problem in a very high-dimensional space

(the dimension of the number of pixels), which also adds more difficulty in network training. Moreover,

while the depths for the input image pixels are learned, still the depths are linearly interpolated, meaning

that sharp edges are prone to be blurred, as shown in Fig. 4.1. For LiDAR range images, it is crucial

to precisely reconstruct the sharp edges since small errors in the image pixels can result in a significant

difference in the 3-D space, largely affecting the performance in occupancy mapping.

To handle these problems, we propose a novel network, Implicit LiDAR Network (ILN), which stems

from the idea of learning implicit function for super-resolution. In contrast to LIIF, our ILN does not

predict the depths of input image pixels but the weights for the interpolation; see the difference in

Fig. 4.2. This change makes a big difference in the network training since it does not learn how to

make a new image, but how to blend the pixel values to fill the fine details. Furthermore, such network

design makes the training to be converged much faster. In our model, the weights for each query to

the neighbor pixels can also be viewed as attentions, and thus a recent attention module such as one in

Transformer [53] can be leveraged to achieve the best performance. Most importantly, sharp edges can

be reconstructed more accurately as shown in Fig. 4.1 since the interpolation is no longer linear.

To this end, we introduce an architecture predicting the weights for interpolation based on the

Transformer self-attention module and then conduct experiments by training networks with a novel

synthetic large-scale dataset created using CARLA simulator [54] (LiDAR scanning in virtual outdoor

scenes). We compare our method with three baselines, bilinear interpolation, LiDAR-SR (the most

recent autoencoding-style network) [46], and LIIF [52], and show that our method achieves the best

performance. Furthermore, using real LiDAR data, KITTI odometry [55], we discuss the benefits of our

method for occupancy mapping in the real environment.
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4.2 Problem Definition and Motivation

A range-based sensor shoots multiple lasers and measures the depth (detection distance) of each

laser. Let v and h be vertical and horizontal directions of a laser, and r be its measurement depth value.

Then, we can represent the measurement points in the sensor coordinate as a set of 2-D depth samples,

where each sample indicates the depth r of the laser (v, h). Based on this sensor model, the sample set

can be represented as a range image since a real LiDAR has a sensing resolution. In the range image,

each pixel indicates the depth r at the pixel center (v, h).

The goal of resolution-free LiDAR is to predict a detection distance r̂ of a query laser q based on

an input range image I. Then, our problem becomes finding an unknown function f(·) expressed as

r̂ = f(I,q), (4.1)

where q means the query laser’s direction (v, h) within the sensor’s field of view. The state-of-the-art

method, LIIF [52], solves this problem as:

r̂ =

4∑
t

g(·)h(·|θ) =

4∑
t

St
S
· h(z′t|θ), (4.2)

where g(·) and h(·) denote the weight and value functions, respectively. The network h(zt|θ) predicts

the value of a neighbor pixel by using the local feature z′t of query and the learning parameters θ, while

computing each weight St based on the distance between a pixel center and the query point. The problem

of this approach is that the network learns new values (depths in our case) for input pixels instead of

using given values, and thus the output can largely deviate from the input in the early stage of training.

Moreover, LiDAR range images typically have lots of sharp edges, while the sharp edges may not be

reconstructed well with linear interpolation (Fig. 4.1).

To overcome these problems, this work proposes a novel approach, named Implicit LiDAR Network

(ILN), predicting the weights:

r̂ =
4∑
t

g(·|θ)h(·) =
4∑
t

g(z′t|θ) · rt. (4.3)

Our model utilizes the neighbor pixel value rt of input image instead of the prediction value. The proposed

network g(z′t|θ) predicts the interpolation weight with the deep feature embedding prior knowledge. The

predicted weight determines which neighbors are valuable to infer the detection distance r̂ of query laser

q. This approach focuses on how to fill the unmeasured information with the neighbor pixels (sensor

observations), resulting in fast convergence speed and robust LiDAR points reconstruction as well.

4.3 Implicit LiDAR Network: LiDAR Super-Resolution via In-

terpolation Weight Prediction

In this section, we introduce technical details of the proposed structure to predict interpolation

weights. Fig. 4.3 shows a diagram of our network structure trained by a regression loss, L1 loss, in a

supervised manner. At the testing step, we extract local features of a query laser from an encoded deep

feature map (Sec. 4.3.1). Then, our feature transformer utilizes a self-attention mechanism and fuses the

local feature information to improve performance (Sec. 4.3.2). Finally, the proposed network predicts

the interpolation weights and computes a detection range of the input query laser (Sec. 4.3.3).
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Figure 4.3: Framework of Implicit LiDAR Network (ILN). The proposed model predicts the interpolation

weights w1:4 with local deep features z′1:4 of the query laser q. Noticeably, the self-attention module

enables the accurate detection range prediction r̂ of the query laser. See Fig. 4.4 for more details.
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(b) Self-attention module in feature transformer

Figure 4.4: Local query embedding and self-attention module. (a) Local deep feature z′t of query q is

composed by neighbor’s feature zt and relative position ∆qt. (b) The self-attention module extracts the

correlation of local features z′1:4 as an attention map. Then, the feature transformer using the attention

data produces the correlated features z∗1:4 for accurate detection range prediction.

4.3.1 Local Feature Extraction

An input range image I consists of the sensor observations, i.e., detection distances of lasers.

Nonetheless, individual pixel associated with each observation has insufficient information to predict

interpolation weights robustly. We, therefore, extract deep features from the input low-resolution range

image. The pixel-based representation of the input enables to utilize the well-studied feature extrac-

tors [56–58]. In this work, we opt the feature encoder [58] that the state-of-the-art method [52] uses.

The encoder module captures local contexts of pixels through deep convolutional operations, and rep-

resents the input range image as a feature map. Each high-dimensional feature vector is assigned to

individual pixel of the feature map.

When a query laser is given, we can retrieve the deep features z1:4 located in the query’s neighbor

pixels of the feature map. Our implicit model utilizes the deep features to predict a detection distance r̂

of a query laser q. However, since each feature vector has no query information for the detection range

prediction, it needs to embed such information into its neighbor feature vector. As shown in Fig 4.4-(a),

our model uses a relative position ∆qt between a pixel center and the query point, similar to the local

implicit model [52]. On the other hand, unlike the prior work, our model adopts the positional embedding

on feature space in the light of their great success [50, 53, 59]. This process makes a local feature vector

z′t by fusing the expanded position ∆qt and the feature vector zt.
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4.3.2 Feature Transformation using Self-Attention

Each local deep feature z′t can be used directly to predict its interpolation weight wt of pixel value rt.

However, we found that four predicted weights w1:4 determine which reference value should be focused

on for the robust final prediction. Based on this observation, we consider that the interpolation process

shares a goal of attention from a query to its neighbor pixels, and thus leverage an attention mechanism

to achieve performance improvement.

In the previous stage, we make four local features z′1:4 embedding query and its neighbor pixels’

information. Therefore, by applying a self-attention module to the local features, our model (Fig. 4.3) can

predict the interpolation weights w1:4 from the query to its neighbor pixels robustly. We found that the

self-attention have achieved outstanding performance in Transformer models [53,59] on natural language

processing and vision tasks as well. In the light of the achievement, our method uses the self-attention

mechanism of the recent model [53].

In a high-level idea, the self-attention of feature transformer fuses the information of local features

z′1:4 so that the predicted weights w1:4 determine the reference values r1:4 reasonably. Fig. 4.4-(b) shows

a self-attention process that represents correlation among the local features as an attention map. The Q

and K vector sets, originated from the local features, extract the self-correlation that can lead to a good

choice for interpolation. Then, this module combines the extracted attention map and the transformed

V vectors, resulting in the correlated features z∗1:4.

In training step, the transformer learns its parameters so as to catch the best correlation of input

features and thus predict the detection range accurately. As a result, this proposed approach shows the

significant performance improvement in our experiment (Sec. 4.4.4).

4.3.3 Interpolation Weight Prediction

As shown in Fig. 4.3, the shared linear layer projects the output features z∗1:4 of the transformer

into weight scores, and then the softmax function computes the interpolation weights w1:4. At the final

stage, we apply Eq. 4.3 to infer the detection distance r̂ of query laser q by combining the reference

values r1:4 and the predicted weights w1:4. Our method utilizes the interpolation values r1:4 from the

input range image I, while the recent approach [52] predicts the values via a deep network (Eq. 4.2).

In the LiDAR super-resolution, we observed that the frequent sharp transitions of range values could

make unstable predictions of missing information, and thus result in lots of undesired artifacts (Fig. 4.7).

Under this observation, our network focuses on learning the adaptive weights prediction through deep

prior knowledge, instead of the values prediction.

4.4 Experimental Results

4.4.1 Dataset for resolution-free LiDAR

An implicit network predicts an output signal at any continuous query point. Hence, it could be the

best solution for training the network with detection distance samples from infinite resolution LiDAR.

Unfortunately, there is no sensor having such hardware specification in the real world, and thus it is

challenging to prepare the dataset. In this chapter, we use the CARLA simulator [54] to overcome this

problem. The simulator supports ray-based sensing simulation in various realistic environments such as

large-scale urban scene.
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(a) Simulation scene

Table 3.1: Summary of CARLA dataset configurations: LiDAR specification and scene split.

LiDAR
specification

vertical angle [deg.] -15 ∼ 15

horizontal angle [deg.] -180 ∼ 180

max. range [m] 80

Scenes
train set (# of scenes) Town 01 ∼ 06 (22,244)

test set (# of scenes) Town 07 & 10 (2,847)

24

(b) Dataset configurations: LiDAR specification and scene split.

(c) 16 × 1024 (d) 64 × 1024 (e) 128 × 2048 (f) 256 × 4096

Figure 4.5: CARLA dataset. We simulate LiDAR sensors at about 24 K poses with various resolutions

reported in (b). In the example scene (a), (c) − (f) represent the point clouds captured by LiDARs

having different resolutions; their labels indicate the vertical and horizontal resolutions, respectively.

We can measure ground truth detection distances at various resolution settings in the simulation

environments. Furthermore, ideally, it can be possible to train an implicit network while obtaining range

samples at any continuous laser direction. However, such online sampling and learning on simulation

need intractable training time as well as computational resources. This work avoids this practical issue

by simulating extremely high-resolution LiDAR and collecting tremendous detection range samples. We

gather the LiDAR data at the maximum 256 and 4096 for vertical and horizontal resolutions, respectively,

in which our computation resources are available.

As shown in Fig. 4.5, we prepare the data with four different resolutions. Such multi-resolution

settings enable to train the implicit as well as pixel-based super-resolution approaches. In addition, we

can measure the super-resolution performances of implicit networks in the various test resolutions.

4.4.2 Experimental Settings

We select the bilinear interpolation algorithm as a baseline approach, which computes the weights of

four neighbors. Also, the state-of-the-art implicit method, LIIF [52], is evaluated to check the effectiveness

of our weight prediction approach. These methods, including ours, aim to solve Eq. 4.1, LiDAR super-

resolution without resolution constraint. On the other hand, LiDAR-SR [46] up-scales the low-resolution

range image to its trained resolution only. Using the pixel-based LiDAR super-resolution method, we

check the benefits of the implicit model.

The experiments perform LiDAR super-resolution, which upscales the range image from the low

16×1024 resolution to higher resolutions. In the test, we use three test resolutions; 64×1024, 128×2048,

and 256 × 4096. We train a single model of each implicit network with the 128 × 2048 resolution data

and then evaluate it in the various test resolution settings. To reconstruct range images at a specific

test resolution, we make a set of query lasers matching pixels’ center. Note that it needs to train a

pixel-based network at a fixed upscale factor to compare performance. Therefore, we train and evaluate

individual LiDAR-SR networks at each test resolution setting in this experiment.
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Table 4.1: Quantitative comparison for LiDAR data generation on CARLA dataset. The bold texts

represent the best performance on each metric. ∗Pixel-based super-resolution networks were trained to

generate each target resolution individually.

Method MAE IoU Precision Recall F1

Test resolution: 64× 1024

LiDAR-SR [46]∗ 1.560 0.233 0.370 0.377 0.373

Bilinear 2.372 0.202 0.322 0.328 0.325

LIIF [52] 1.558 0.258 0.403 0.409 0.406

Ours 1.536 0.329 0.483 0.486 0.484

Test resolution: 128× 2048

LiDAR-SR [46]∗ 1.746 0.161 0.262 0.288 0.274

Bilinear 2.591 0.165 0.268 0.287 0.277

LIIF [52] 1.714 0.236 0.372 0.388 0.379

Ours 1.690 0.331 0.483 0.498 0.491

Test resolution: 256× 4096

LiDAR-SR [46]∗ 1.735 0.127 0.207 0.245 0.224

Bilinear 2.646 0.163 0.256 0.303 0.277

LIIF [52] 1.923 0.158 0.221 0.356 0.272

Ours 1.763 0.232 0.353 0.396 0.373

We use two Tesla V100 32GB GPUs except training the LiDAR-SR network for 256×4096 resolution;

it requires four GPUs. On the PyTorch framework, we train the prior methods with the parameters

reported in their papers. Specifically, we train these models by Adam optimizer [60] with an initial

learning rate 10−4. The batch size is set to 16.

The LiDAR super-resolution networks reconstruct the up-scaled range image having test resolution.

We measure the mean absolute error (MAE) of all the pixels in the predicted 2D range images. Fur-

thermore, we measure the performances using the 3D points reconstructed by networks. Since various

applications use the LiDAR point cloud as raw sensor data, the reconstruction performances represent

methods’ usefulness. Specifically, we measure the representation accuracy of the points with 0.1 m grid;

intersection over union (IoU), precision and recall, and F1 score. These metrics show how well a method

reconstructs LiDAR points similar to ground truth points.

4.4.3 Comparison with Prior Methods

In this section, we demonstrate the benefits of our method comparing with the prior methods. In

summary, Table 4.1 reports the quantitative performances and Fig. 4.7 shows the qualitative results at

the 128× 2048 test resolution setting.

Comparison with weight computation approach. When comparing the approaches estimating

the interpolation weights, our method outperforms the bilinear interpolation on all the metrics. The

bilinear approach and ours utilize the same reference values from four neighbor pixels. Nonetheless,
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Figure 4.6: Performances on the test set according to training epochs. We report the evaluation results

at every 10 epochs. Comparing with the other methods, ours shows the outstanding convergence speed

with stable performance.

the reported performances demonstrate that our deep network predicts the interpolation weights more

robustly than the bilinear weight computation. The deep network exploits the prior knowledge and

estimates the adaptive interpolation weights based on deep features. As a result, ours reports up to 2.0

times improvement on the IoU evaluation metric.

Comparison with implicit network. Our implicit network predicts the interpolation weights

to compute detection distances of query lasers, while LIIF predicts the values (Fig. 4.2). Two implicit

methods are trained with the resolution data only; thus, the experiments using the various test resolutions

can have different data distributions from the training dataset. The test resolutions less than equal to the

training resolution, 64× 1024 and 128× 2048, indicate the in-distribution test environments. Otherwise,

the 256× 4096 resolution becomes out-of-distribution.

Table 4.1 reports the experimental results using both in-distribution and out-of-distribution tests.

Overall, our method outperforms the state-of-the-art implicit network in the various settings. On the

in-distribution test, ours achieves higher performance than the prior work in both 2D range image and

3D points reconstruction. In particular, our method achieves remarkable performance gains for repre-

sentation accuracy of reconstructed LiDAR points, as shown in Fig. 4.7. For example, our method shows

0.330 IoU performances on average of two test resolutions, while LIIF reports 0.247 IoU. Furthermore,

we achieved significant performance improvements on the out-of-distribution test. Our method shows

outperforming 3D points reconstruction, while reporting the meaningful improvement on MAE metric.

This result represents that our implicit model can cover continuous queries at an even higher resolution.

We can achieve such improvements thanks to the interpolation weights prediction instead of the

values. Like the qualitative results in Fig. 4.7, we observed that the value predictions of LIIF can lead

undesired noisy artifacts on 3D representation. On the other hand, our weight prediction approach

reconstructs the dense LiDAR points robustly. In our model, the predicted weights w1:4 determine the

valuable reference values r1:4 of the input range image via local deep features z′1:4 and self-attention
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Figure 4.7: The qualitative results of LiDAR super-resolution via various methods. The highlighted

region in the black box of each left figure is shown in its right side. Compared to the other methods, our

method reconstructs the 3D points robustly with much less noisy artifacts. The color in the captures

represents a relative height.

mechanism. The proposed method learns how to blend the input pixel values to fill the unmeasured

information through non-linear weights. As a result, the approach shows the outstanding performances

for LiDAR super-resolution through quantitative and qualitative results as well.

Comparison with pixel-based super-resolution. Ours and LIIF are based on implicit function;

on the other hand, LiDAR-SR has pixel-based convolution/deconvolutional architecture. In this analysis,

we check the benefits of our method based on implicit function.

Table 4.1 shows the our method reports the much higher performances on evaluation metrics, except

slight lower performance in MAE at the 256×4096 case. Note that since we train our implicit model with

the lower resolution, 128×2048, the result of ours shows performances in an untrained out-of-distribution

environment. On the other hand, the LiDAR-SR network was trained for the test resolution. Despite

such conditions, our model shows outstanding 3D points reconstruction with a similar MAE.

Our model shows such performance gains with a single trained network. The experiments using

various test resolutions show that our implicit network can predict the detection distance r̂ of query

laser q given the sparse sensor observations, without resolution constraint. Furthermore, our network

shows the robust LiDAR points reconstruction in the various test resolutions, compared to the pixel-based

networks trained with each test resolution data.

Convergence speed. Our method predicts the detection distance r̂ based on predicted inter-

polation weights with reference values of the input range image. This architecture design results in a

significant convergence speed, as shown in Fig. 4.6. These graphs show that our method converges much

faster than other methods in various metrics and test resolutions, reporting more stable performances.

Such fast convergence speed is helpful for training a new model in a different environment without huge

costs.
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Figure 4.8: Performances of ours depending on the number of attentions, D.

4.4.4 Effectiveness of Self-Attention

Our network utilizes an attention mechanism to achieve performance improvement, as mentioned

in Sec. 4.3.2. To show such benefits of attention in our model, we evaluate the performance gains over

different numbers of self-attentions. The graphs in Fig. 4.8 show the experimental results at various test

resolutions. The result shows slight improvement when applying more self-attentions to feature vectors.

On the other hand, we find remarkable performance gains over all the tests when comparing the model

with and without the attention module, D = 1 and D = 0, respectively. This result demonstrates the

usefulness of the attentions in our model.

4.4.5 Occupancy Mapping with Real LiDAR Data

In this experiment, we analyze the performance of our network in occupancy mapping with real

sensor data. Using the KITTI odometry dataset [55], we evaluate the methods trained with the synthetic

Carla dataset without any fine-tuning. The KITTI dataset consists of points that a 64-vertical channel

LiDAR has captured. However, we need a 16×1024 range image as an input of networks to measure the

performance without new training. To deal with this issue, we down-sample the high-resolution points

of each scan and make its low-resolution range image.

Our implicit network reconstructs dense LiDAR points from the 16-channel to various test resolu-

tions; 64× 1024, 96× 1536, 128× 2048, and 192× 3072 resolutions are used in this test. Our mapping

framework updates an occupancy grid having the 0.2 m voxel size from the 16 × 1024 sensed points as

well as the reconstructed points.

The AUC graphs of Fig. 4.9 show the representation accuracy of the occupancy maps using various

resolutions in three different scenes, and Fig. 4.11-(a) represents the occupied regions of occupancy maps

in the scene, KITTI 06. The graphs of all three scenes report that occupancy representation becomes

more accurate as the proposed network reconstructs the more dense LiDAR points. Note that the

LiDAR configuration of the KITTI dataset is different from the training dataset; a LiDAR of the KITTI

dataset has the −25◦ ∼ 3◦ vertical sensing angle. Due to the difference, the real LiDAR dataset can

have unseen data distribution when training. Nonetheless, the map using our LiDAR super-resolution

network achieves a more accurate occupancy representation than it using only sensed data. These results

demonstrate that our network enables the maps to represent the occupancy states of the environments

robustly.

Noticeably, we found a significant performance improvement between test settings using the 16-

channel input points and the 64-channel reconstruction outputs. For example, Fig. 4.11-(b) shows the

sparse representation caused by the limited number of sensed points, reporting a 0.833 AUC score. On
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Figure 4.9: Representation accuracy of occupancy mapping. The 16 × 1024 indicates a resolution of

input sparse sensor data, and the others represent the resolutions for point cloud reconstruction via our

LiDAR super-resolution network. According to various test resolutions, these graphs show the ROC

curves in three different scenes of the KITTI dataset. The number within the bracket is the AUC score

of the map.
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Figure 4.10: Update performance of occupancy grid in KITTI scene 06. Each graph shows the update

time according to various density levels of the reconstructed points. The blue and green lines represent

the map update time and LiDAR points reconstruction time, respectively.

the other hand, as shown in Fig. 4.11-(c), applying the reconstructed points to occupancy mapping

results in the dense and robust representation with a high AUC, 0.909. Moreover, we achieve up to 0.923

AUC score at the maximum test resolution in this experiment.

The large number of points require high computational overhead for updating an occupancy grid

despite the dense occupancy representations. Fig. 4.10-(a) shows that the map update times (blue line)

become the higher as the LiDAR resolutions are larger. Furthermore, the map update dominates the total

processing time (red line) compared with the LiDAR point reconstruction (green line). To reduce the

processing time, we apply the super rays and culling region-based update methods (Chap. 2). Fig. 4.10-

(b) reports the performance improvement in update speed compared with the results using traditional

updates (Fig. 4.10-(a)). The super rays and culling region accelerate the update speed of occupancy grid

although using the dense points reconstructed by our implicit LiDAR network.
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(a) Occupied test points (ground truth) (b) Input 16 × 1024 (0.833 AUC)

(c) ILN 64 × 1024 (0.909 AUC) (d) ILN 96 × 1536 (0.918 AUC)

(e) ILN 128 × 2048 (0.921 AUC) (f) ILN 192 × 3072 (0.923 AUC)

Figure 4.11: occupancy mapping results in KITTI 06 scene. These figures show the occupied cells of

the occupancy maps updated from point clouds having various resolutions. The red and blue boxes of

each figure represent the enlarged regions of the environment.
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Chapter 5. Conclusions

In this dissertation, we propose three methods that exploit the spatial correlation of point clouds

for dense occupancy mapping with real-time updates. We design 1) a real-time update algorithm based

on geometric update patterns of grid-based occupancy maps. Furthermore, to achieve dense occupancy

map representation, we employ 2) a regression approach using non-uniform distributions of occupancy

observations and 3) a deep network learning the spatial correlation of measuring point clouds.

In Chapter 2, we have proposed two novel update methods for grid-based occupancy maps based on

super rays and culling region. As our main algorithm, we construct a super ray that updates the same

set of cells on occupancy maps in a single traversal. Specifically, we have proposed to use a mapping

line for efficiently generating super rays in 2D case, and extend it to handle the 3D case. We also have

proposed a culling region for reducing the number of unnecessary map updates. We have tested our

methods using public datasets to reporting the update speed on grid-based maps, and achieve overall

outstanding performance across all the tested configurations.

In Chapter 3, we have proposed a new method, AKIMap, to use an adaptive kernel inference for

the dense and sharp representation on the occupancy grid. For high estimation accuracy, our work has

proposed to find the adaptive kernel bandwidth based on the local distribution of occupancy samples

efficiently. As a result, our method has shown the robust occupancy representations with efficient com-

puting in two synthetic scenes, compared to the prior methods. Furthermore, we have demonstrated the

practical benefits of our adaptive approach in on-the-fly mapping. Compared to the isotropic approaches,

our method has shown the accurate occupancy representations of the environment, thanks to the varying

shape and size of our adaptive kernel estimations.

In Chapter 4, we have proposed Implicit LiDAR Network (ILN), learning an implicit function

for LiDAR range image super-resolution. Inspired by recent implicit network, our network views the

LiDAR image as continuous 2D data and predicts the depth at the given query point by taking the

depths in neighbor input pixels and interpolating them. However, in contrast to the prior work, our

ILN learns the weights for the interpolation and blends the input depth values with possibly non-linear

learned weights, which significantly improves reconstruction accuracy particularly for the sharp edge

areas. The experiments with our novel large-scale synthetic benchmark demonstrate the outperformance

of our method compared with the previous work and the pixel value prediction network. Furthermore,

the experiment of occupancy mapping with real LiDAR data demonstrates that the proposed method

enables a dense representation of an occupancy map.

We have shown the occupancy mapping approaches exploiting spatial correlation of point clouds for

dense representation and real-time update. Nonetheless, the proposed methods can be more optimized

by other upcoming occupancy estimators. For example, one can utilize a color image to improve the

robustness of our network’s points reconstruction, leading to robust occupancy map representation. In

addition, the parallel computing power of GPU can enable an occupancy map to achieve real-time update

performance. Like these approaches, we hope this dissertation provides meaningful research direction to

future work for occupancy mapping.
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Chapter 6. Appendix

6.1 Completeness of using the mapping line

Observation 1. In the 2-dimensional space, if rays have different traversal patterns, these rays are

mapped into two different segments, which are divided by a point projected from a grid point of a cell.

Theorem 1. All the rays of a super ray generated by mapping line in the 2D space have the same

traversal pattern.

Proof. Our algorithm makes a mapping line by projecting all the grid points within a seed frustum

into an arbitrary line. Rays associated with the seed frustum are mapped to a finite region in the line:

[p0, pI), where p0 and pI are the boundary values of the projected seed frustum into the mapping line. Let

Pproj = {p1, p2, . . . , pI−1} be a set of all the projected grid points within the seed frustum; they are within

the finite region and assumed to be sorted in the order of distance to p0 such as DISTANCE(p0, pi) ≤
DISTANCE(p0, pi+1) for 0 ≤ i < I. The final mapping line computed by our approach consists of a

set of segments:

ML = {[pi, pi+1)|0 ≤ i < I}

(Refer Fig. 6.1-(a)).

Let us assume that rays mapped into the same segment of the mapping line have the different

traversal patterns. This indicates that a new grid point should be projected into the segment according

to Observation 1. This contradicts that no projected grid point exists within each segment [pi, pi+1) for

0 ≤ i < I. Therefore, rays mapped with the same segment of the mapping line have the same traversal

pattern. This proves that all the rays in each super ray generated by our algorithm have the same

traversal pattern.

Observation 2. In the 3-dimensional space, if rays have different traversal patterns, these rays are

mapped into three different regions, which are divided by lines projected from edges of a cell.

Theorem 2. All the rays of a super ray generated by mapping plane in the 3D space have the same

traversal pattern

Proof. Our algorithm makes a mapping plane by projecting all the edges of grid points within a seed

frustum into an arbitrary plane.

Let lxi , lyj and lzk be the lines projected onto the plane from edges aligned to each axis X, Y , and

Z respectively. The projected seed frustum on the plane forms a finite region closed by the boundary

lines: lx0 and lxI , ly0 and lyJ , lz0 and lzK . Let Lxproj = {lx1 , lx2 , . . . , lxI−1}, Lyproj = {ly1 , ly2 , . . . , lyJ−1}, and

Lzproj = {lz1, lz2, . . . , lzK−1} be sets of projected lines from all the edges of grid points within the seed

frustum. The elements of Lxproj and Lyproj are assumed to be sorted in the order of distance to the

boundary lines, i.e., DISTANCE(lx0 , l
x
i ) ≤ DISTANCE(lx0 , l

x
i+1) for 0 ≤ i < I. In the case of Lzproj , its

elements are assumed to be sorted in the order of angle to the boundary line, such as ANGLE(lz0, l
z
k) ≤

ANGLE(lz0, l
z
k+1) for 0 ≤ k < K. All the projected lines partition the plane and generate the final

mapping plane, MP , consisting of a set of regions; each of which is expressed as R(i,j,k):

MP = {R(i,j,k)|(0 ≤ i < I) ∧ (0 ≤ j < J) ∧ (0 ≤ k < K)},
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Figure 6.1: The notations that we use for proofs of Theorem 1 and Theorem 2. The hatched area in

the figure (a) shows a segment of mapping line, [pi, pi+1), closed by two projected points(red). In the

figure (b), the hatched area represents a region of mapping plane R(i,j,k), closed by the projected lines

from edges of grid points.

where a region closed by the lines is defined as follows:

R(i,j,k) =


[lxi , l

x
i+1),

[lyj , l
y
j+1),

[lzk, l
z
k+1)

(Refer Fig. 6.1-(b)).

We now assume that rays mapped into the same region of the mapping plane have different traversal

patterns, for proof by contradiction. This indicates that a line should be projected within the region

according to Observation 2. No projected lines, however, exists within the region R(i,j,k) for 0 ≤ i < I,

0 ≤ j < J , and 0 ≤ k < K, contradicting the assumption. Therefore, rays mapped onto the same region

of the mapping plane have the same traversal pattern.
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