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Abstract We present a rank-based voting technique

utilizing inclusion relationship for high quality image

search. Since images can have multiple regions of in-

terest, we extract representative object regions using

a state-of-the-art region proposal method tailored for

our search problem. We then extract CNN features lo-

cally from those representative regions and identify in-

clusion relationship between those regions. To identify

similar images given a query, we propose a novel similar-

ity measure based on representative regions and their

inclusion relationship. Our similarity measure gives a

high score to a pair of images that contain similar ob-

ject regions with similar spatial arrangement. To verify

benefits of our method, we test our method in three

standard benchmarks and compare it against the state-

of-the-art image search methods using CNN features.

Our experiment results demonstrate effectiveness and
robustness of the proposed algorithm.
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1 Introduction

Image search is a task to identify visually similar images

from an image database given a query image, by iden-

tifying matching features. This is one of the most fun-

damental tools in many image processing and graphics

applications, since the performance of many high-level

problems often depends on the quality of image search.

Many interesting and novel data-driven applications

have been proposed thanks to the advance of image

search and other related techniques. Some of well-known

applications include photo tourism [28] and scene com-

pletion [7]. Furthermore, the data-driven approach keeps

to widen its scope into many other directions [24,17].

The final quality of these data-driven approaches are

affected significantly by the search accuracy, since they
commonly assume that identified images share simi-

lar patches and objects. As a result, we are interested

mainly in improving the accuracy of image search in

this paper.

Image search starts from representing images with

feature vectors, which have been investigated exten-

sively. Recently, deep convolutional neural networks

(CNNs) [19,26,29,8] demonstrate outstanding classi-

fication performance, and the CNN features obtained

from a few hidden layers present great generalizability

to many other domains or tasks [2,22,5].

A näıve integration of global CNN features to recent

image search techniques demonstrated better perfor-

mance [2] than the algorithms based on existing hand-

crafted image descriptors. such as VLAD [14]. Recent

approaches [1,22] improve accuracy further by incor-

porating spatial information of images. While these

recent CNN-based image search methods utilize spatial

information, they still rely only on weaker information

compared to techniques developed for object detection
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(a) A query image (b) A similar, but in-
correct image

(c) A correct tested im-
age

Fig. 1 Our method extracts representative regions from images and identify similar images by matching those regions. We
also improve matching accuracy by considering the inclusion relationship between regions. (a) shows related regions given a
query region r shown in the green box. Yellow and red boxes represent child C(r) and parent P (r) regions of the query region,
respectively; i.e., C(r) ⊆ r ⊆ P (r). (b) The region r of the query image is matched with the green box of this test image.
Nonetheless, their related regions do not match. As a result, we can conclude this image to be different from the query image.
(c) Most of related regions of the query image match with those of this tested image, resulting in matching with the query
image.

and localization. This paper discusses how to utilize

such candidate regions for image search. One of tech-

nical challenges is that most of those candidate regions

may not contain any meaningful objects, since many re-

gion proposal techniques have been designed to achieve

a high recall. These false-positive candidate regions de-

teriorate accuracy of image search.

Main contributions. We propose a novel, rank-

based voting technique, which identifies representative

object regions and retrieves similar images based on

those regions. Our method identifies such representa-

tive regions by utilizing a state-of-the-art region pro-

posal method, while adjusting the objectness measure

to be invariant to object sizes (Sec. 3.1). To achieve a

high matching quality between regions of images, we in-

troduce a novel similarity measurement method based

on a voting scheme, which considers spatial relation-

ship between regions, especially, inclusion relationship

(Sec. 3.3). Using the spatial relationship, we can cull

out incorrect matching results, resulting in substantial

accuracy improvement (Fig. 1).

To verify the effectiveness of our approach, we evalu-

ate our method over three standard benchmark datasets

[11,21,20] and compare it against state-of-the-art im-

age search methods also utilizing CNNs. Overall, our

method achieves higher search accuracy across all the

three benchmarks compared to the tested methods with

the same CNN network. Such successful results are at-

tributed to the accurate identification of representative

regions and reliable similarity measurement between re-

gions. Source codes of our work are available as an open-

source project.

2 Related Work

In this section, we discuss prior methods that are di-

rectly related to our work.

2.1 Convolutional Neural Networks and Image Search

Deep convolutional neural networks (CNNs) have

achieved remarkable performance improvement in vari-

ous recognition tasks. The main reason to make CNNs

successful is their representation power; CNNs capture

high-level semantic information in images much more

accurately [2,22,5] than traditional hand-crafted fea-

ture descriptors. Moreover, the CNNs pre-trained on a
large-scale image datasets are often directly applicable

to other domains and tasks, and their performance is

even boosted by fine-tuning existing models with addi-

tional data.

There are several existing works in image retrieval

based on CNN representations. Babenko et al. [2] used

activations of top three fully connected layers as global

descriptors of the input image. Also, they showed that

the features can become more discriminative for par-

ticular datasets by retraining the network with specific

purpose. Some recent papers proposed a feature aggre-

gation approach to generate improved global descrip-

tors [1,16,30,6]. These ideas are similar to methods de-

signed for dense-SIFTs, i.e., VLAD [14]. In an aggre-

gation step, SPoC [1] gives larger weights to features

near the center as a simple weighting heuristic, and

CroW [16] gives different weights according to the loca-

tion and channel of each feature. Similarly, R-MAC [30]

aggregates region feature vectors, which are generated

by collecting the maximum activation of each region.
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(a) Query w/ mask (b) Completed im-
age

(c) Retrieved image

Fig. 2 This shows examples of the scene completion using
our method. (a) show queries with red masks for the com-
pletion, while (b) are completed images using the retrieved
images (c) by our method in Oxford 5k.

Gordo et al. [6] computes CNN features by leveraging

a three-stream Siamese network with a triplet ranking

loss. This method also suggests an aggregated feature

among multiples features by taking the maximum acti-

vations.

Departing from these aggregation approaches, our

method extracts features from multiple regions and uti-

lizes them for achieving high search accuracy.

2.2 Region Detection

It has been widely accepted to extract and use discrim-

inative regions from images for achieving a high search

accuracy. One of famous object proposal detection

methods is selective search [25], which constructs object

proposals from the hierarchical bottom-up image seg-

mentation. Krähenbühl et al. [18] introduced geodesic

object proposals, where seeds for objects are selected by

minimizing the geodesic distance with all the objects.

Cheng et al. [4] observed that various sizes of objects

have the correlation with norms of gradients, when their

patches are resized to the 8 by 8 fixed resolution.

Recently, neural networks considering regions have

been proposed. Faster R-CNN applies the regression to

predict box coordinates, while considering multiple an-

chors [23]. Also, inside-outside net [3] considered con-

text information for regions. Our proposed method can

be combined with these recent region network for achiev-

ing higher search accuracy. Our proposed method uses

a region proposal method and improve precision by con-

sidering the spatial relationship among regions.

2.3 Similarity Measure

It is also important to have a similarity measure that

gives a small distance to a pair of similar images. For

this purpose, it is common to use simple vector-to-

vector distances such as L1, L2, and cosine metrics.

Some techniques extracted multiple features like our

approach and thus used similarity measures for these

features. Razavian et al. [22] extracted features from

uniformly generated sub-patches, and measured simi-

larity by averaging the minimum L2 distance between

sub-patches of each image. Recently, Xie et al. [31] ex-

tracted multiple features from their manually defined

objects, and applied Naive-Bayes Nearest Neighbor

(NBNN) search in order to utilize semantic category

information of images. This method, however, requires

categorized image datasets.

Our method utilizes rank-based voting scheme, which

directly considers the spatial relationship between re-

gions, and thus improves the accuracy of search method.

3 Our Approach

In this section, we describe our method that extracts

multiple regions from an image and utilize the relation-

ship among those regions. At a high level, our approach

is divided into four parts: representative region selec-

tion, feature extraction, similarity measurement, and

compression/indexing parts. We first explain how to ex-

tract regions from an image.

3.1 Representative region selection

The state-of-the-art object localization methods show

impressive recalls for detecting objects by employing re-

gion proposal techniques [4,25,18]. Although these ap-

proaches are useful to improve recalls in object detec-

tion, it is inappropriate to directly use such region pro-

posals to our problem of image search. Especially, we

have found that most candidate regions, e.g., more than

90%, generated by recent region proposal methods, i.e.,

selective search [25] and BING [4], do not match with

their ground truth bounding boxes; see the table in the

supp. report. It is thus unlikely to achieve high search

accuracy based on representations involving such unim-

portant regions.

To address the aforementioned problems, we decide

to leverage only top-k confident regions. Many effec-

tive confidence measuring methods make it possible to

determine the ranking of region proposals Thankfully,

among the state-of-the-art object localization methods,

BING [4] proposes candidate regions by estimating their
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Fig. 3 Comparison of the Euclidean distances between fea-
tures extracted only from chosen regions (red boxes in left)
and extracted from the whole images (right). Features ex-
tracted from chosen regions represent the contents of an im-
age clearly, and enable similarity matching to be more accu-
rate.

objectness in an efficient manner. We therefore decide

to utilize this objectness metric for selecting top-k rep-

resentative regions among many candidates. We tune

the objectness score to be more suitable for image search,

and select top-150 regions based on the score. Details of

the tuning is described in our supplementary material,

and the analysis for k, the number of selected regions,

is available in Sec. 4.6.

3.2 Feature extraction

After selecting k representative regions from an image,

we extract a feature from an image box of each region.

We can use any CNN feature as our image descriptor

for each region. Additionally, we store inclusion rela-

tions of regions together, which are used to improve

the confidence of matching (Sec. 3.3).

The features extracted from representative regions

is more appropriate than features extracted from the

whole image, especially for the image search task. As

an example, Fig. 3 shows that while two images con-

tain the same object, their Euclidean distance between

features extracted from the whole images is far. On the

other hand, by extracting features only from represen-

tative regions, we achieve a shorter distance, resulting

in better image search. In Sec. 4.2, we show that our

method improves recall of image retrieval, compared

with using features extracted from the whole images.

During the feature extraction, we also store inclu-

sion relations of regions. There exist many kinds of re-

gions such as regions representing some parts of

objects, indicating whole objects, and including even

backgrounds. We utilize such inclusion relationships be-

tween two regions for accurately identifying similar im-

ages as shown in Fig. 1(a).

3.3 Similarity measurement

Most existing image search techniques adopted a type of

aggregation that computes a single feature from many

local features [27,14,1]. One of well-known aggregation

techniques includes the bag-of-feature model [27]. These

techniques then employ a distance metric, e.g., Eu-

clidean or cosine distances, between those aggregated

features to compute a similarity between two images.

We can also use such a similarity metric by aggregat-

ing features extracted from regions into a single feature

vector.

Unfortunately, we found that the traditional dis-

tance metrics produce suboptimal results to our method,

because the aggregated features dilute the content in-

formation extracted from multiple image regions. In-

stead, we propose a voting-based similarity measure,

which is well suited for our features extracted from mul-

tiple image regions.

Let qi ∈ R(Iq) be an i-th selected region from the

query image Iq, where R(Iq) denotes a set of regions

proposals in the image Iq. Since the order of regions

does not matter in our method, the feature set of a query

image is then given by F(Iq) =
{
f(qi) | i = 1, ..., k

}
,

where f(qi) denotes the feature descriptor for qi and k

is the number of representative regions extracted from

the image. For each region qi, we retrieve images from

the database that contain a region close to qi based on

the Euclidean distance in the feature space. Suppose

that an ordered set of retrieved regions for the query

region qi is denoted by Di =
{
dij | j = 1, ..., v

}
, where

j is the rank index in terms of the Euclidean distance

and v is the number of retrieved regions.

We identify similar images using a new similarity

measure, which is based on a voting scheme defined on

region proposals. The proposed voting algorithm pro-

vides a score for a region of an image in the database,

where the score is composed of two factors:

VotingS(qi, dij) = RankS(qi, dij) · RelS(qi, dij), (1)

where RankS(·, ·) and RelS(·, ·) denote ranking and re-

lation scores between two regions, respectively. Note

that RankS(·, ·) computes rank-based region similarity

and RelS(·, ·) considers the inclusion relationship with

related regions of input proposals. The final similarity

measure considered with all regions between the query

image Iq and an arbitrary image I in the database is

given by:

Sim(Iq, I) =
∑

qi∈R(Iq)

max
dij∈Di∩R(I)

VotingS(qi, dij), (2)

where Di∩R(I) indicates a set of retrieved regions for qi
among regions from the image I. This similarity metric
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simply sums voting scores, each of which is computed

by the best match from a region qi of the query to

another region dij in the test image I.

We first define our rank-based region similarity,

RankS(·, ·), which utilizes a rank of a retrieved region

from a query region. Simply, the ranking score of dij
for qi is determined as:

RankS(qi, dij) = 1/j. (3)

Intuitively, as we get a bigger rank order, we give a

lower similarity score to the region dij .

We now define our relationship score RelS(·, ·). Our

main idea of using the inclusion relationship is that

while regions of a database image can match with query

regions, their related regions may or may not be matched

(Fig. 1(b)). Depending on whether related regions match

well or not, our confidence level of the matching be-

tween the query image and the tested database image

can vary significantly. To realize this intuition, we in-

troduce the relationship score RelS(qi, dij).

For an arbitrary region r, we let P (r) be a set of

parent regions including the box of r, and C(r) be an-

other set of child regions included in the box of r. We

first define a set of matched parent regions between qi
and dij as follows:

MatP(qi, dij) =
{
dp | dp ∈ Dx ∩ P (dij) for qx ∈ P (qi)

}
,

(4)

where Dx is a retrieved region set of qx, a parent region

of qi. Intutively speaking, MatP(qi, dij) contains the

parent regions of dij that are also retrieved for parent

regions of qi. A set of matched child regions MatC(·, ·)
is defined in the same manner. We then define a set of

matched related regions between qi and dij as follows:

MatRels(qi, dij) = MatP(qi, dij)
⋃

MatC(qi, dij). (5)

We assume that better matched images are likely to

have bigger sets of MatRels(·, ·) for the query region

qi. The relationship score RelS(qi, dij) is finally defined

based on the matched related regions:

RelS(qi, dij) = 1 + |MatRels(qi, dij)| , (6)

where 1 represents the matching of qi and dij them-

selves, and the cardinality of MatRels(qi, dij) indicates

the number of matching within their related regions.

Fig. 4 shows visually how our rank-based voting

method achieves high matching quality. Fig. 4(a) shows

matched regions in yellow boxes and unmatched re-

gions in red boxes between a query and its ground-

truth test image. In case of using cross-matching [22]

or NBNN [31] for the similarity measurement between

(a) Ignore dissimilar regions (red boxes) with voting

(b) Deemphasize frequently appearing objects, resulting in
short L2 distances (red boxes) by the rank

(c) Handle burstiness of local regions by having a maximum
single vote; dotted boxes are not considered, so the impact
of other matches relatively increases (yellow boxes). As a
result, the voting score, 1.2, for the positive true is higher
than that, 1.0, of the positive false.

Fig. 4 Left images are queries, and right images are test
images. Green and red bars on top of test images indicate
correct and incorrect matched results, respectively. Our rank-
based voting method handles these issues commonly raised by
using local features. Yellow boxes represent similar regions,
while red ones indicate less important matches.

multiple regions, all the regions in two images con-

tribute to their similarity. In this approach, dissimilar

regions are also matched and lower down the quality of

measuring the similarity between two images. On the

other hand, our method measures the similarity only

with matched regions by utilizing the ranking set of

Di, which is top-v close regions to the query region qi.

Fig. 4(b) points out a problem caused by frequently

appearing objects. Objects in the red boxes are visually

very similar, so they can have a much higher similar-

ity score than other matches, overwhelming important

matches between the object shown in the yellow box.

As a simple, yet effective way to normalize the impact

of each region in the query, we use a ranking score in-

stead of the direct L2 similarity for the final search
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result as shown in Eq. 3. For frequently appearing ob-

jects, there are many images containing such objects

and thus a ranking of a test image can be very low,

as demonstrated in Fig. 4(b); note that this is a simi-

lar concept to the term of inverse document frequency

(IDF), a common technique deemphasizing frequently

appearing words in the text search.

Fig. 4(c) demonstrates the burstiness problem,

which can occur for local image descriptors [12] includ-

ing our approach. Our method, however, naturally pre-

vents the burstiness, since each region in our method

votes only once for a test image, by utilizing the max-

imum score as shown in Eq. 2. Finally, the RelS(·, ·)
term considered spatial relationship among regions and

improve the matching confidence (Fig. 1). Effects of this

term is elaborated in Sec. 4.4.

3.4 Scalable encoding and indexing

Our method aims to achieve high search accuracy by

representing an image with multiple regions. As a re-

sult, it may require a large amount of memory for en-

coding all the images for large image datasets. In order

to improve both memory and computational efficien-

cies, we adopt Principle Component Analysis (PCA)

with whitening [10] and Product Quantization (PQ) [13]

for our features.

PCA is well-known method for dimensionality re-

duction, and Jégou et al. [10] showed that it could even

improve the quality of features by applying whitening.

We also apply PCA and whitening to the features first,

and convert them into compact codes using PQ. In the

search time, our method first retrieves a shortlist with

a size M using the compact codes, and then performs

our voting method on the shortlist using the PCA fea-

tures. Details of our implementation can be found in

the supp. report.

We also utilize IVFADC [13] to retrieve a shortlist

for our voting method. IVFADC is built upon the in-

verted index defined with a coarse quantizer such as

K-means clustering. Each feature is indexed based on

the inverted index and stored as a compact code com-

pressed by PQ. At the searching stage, we first collect

nearest-neighbor candidates by accessing the inverted

index, and re-rank them according to the estimated

distance between a query feature and a compact code.

Since we perform the search by using the inverted in-

dex and accessing compact codes before computing the

shortlist, it drastically improves the memory footprint

required and access time. More details on the IVFADC

and shortlist computation can be found in [13,9].

Table 1 Comparison of search accuracy w/ and w/o using
RelS(·, ·). RelS(·, ·) improves the accuracy significantly for
difficult queries that produce frequent mismatches w/o using
the term in Oxford 5k. Considering the term increases 0.137
AP on average over these four queries.

queries w/ RelS(·, ·) w/o RelS(·, ·)
christ church 5 0.461 0.304
cornmarket 2 0.782 0.641

balliol 1 0.758 0.625
magdalen 3 0.506 0.387

Table 2 Comparison of the average recalls of our approach
w/ local features extracted from regions against the single
global feature extracted from a whole image.

Holidays Oxford 5k UKB
Feature types recall@20 recall@200 recall@10
Single global 0.831 0.618 0.931

Multiple regional 0.977 0.865 0.990

4 Experiment

We now present various experimental results on three

standard benchmarks. We also compare the search ac-

curacy of our image search algorithms against the state-

of-the-art techniques using CNN-based representations.

4.1 Datasets

Our experiments are performed on the following three

standard benchmark datasets:

Holidays dataset [11]. This dataset consists of 500

groups of photographs, and each group represents the

same scene or object taken in vacation. The total num-

ber of photographs is 1,491, and the number of queries

is 500. The performance is measured by the mean av-

erage precision (mAP) over the queries. For a fair com-

parison, we also use the manually rotated version of the

dataset as adopted by previous works [2,1,16,6].

UKB dataset [20]. This dataset is composed of 10,200

photographs for 2,550 indoor objects, so there are four

images taken from different viewpoints for each object.

Each image is used as a query, and the performance is

measured by the average number of retrieved images

representing the same objects within the top-4 over all

the queries.

Oxford 5k dataset [21]. The dataset consists of 5,062

Oxford landmark images, collected from Flickr. The

dataset has 11 query landmarks, each of which has 5

query images. The performance is evaluated with mAP

over the queries. For each query, the dataset provides

a single bounding box containing the exact landmark

for each query; note that the bounding box is provided

only for queries, not for test images. Since the bounding

box provides accurate region-of-interest, it is desirable
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Table 3 Comparison of the accuracy between a general im-
age search scheme and our proposed method w/ different im-
age descriptors. Across all different cases and benchmarks,
our method improves the accuracy over a general image
search using the single global feature and L2 distance metric.

Holidays (mAP)
search scheme Caffe CaffePCA VGG VGGPCA

Single-L2 0.691 0.743 0.642 0.697
Ours 0.879 0.907 0.884 0.917

Oxford 5k (mAP)
search scheme Caffe CaffePCA VGG VGGPCA

Single-L2 0.302 0.356 0.319 0.415
Ours 0.678 0.735 0.661 0.768

UKB (recall@4)
search scheme Caffe CaffePCA VGG VGGPCA

Single-L2 0.832 0.877 0.806 0.866
Ours 0.943 0.957 0.952 0.970

to use this additional information, and thus we utilize

the bounding box as one of our region proposals. We

also use the well-known Oxford 105k, which add addi-

tional 100k distractor images to Oxford 5k. We use the

benchmark for scalability tests.

Holidays consists of outdoor scene images, Oxford 5k

contains building images, and UKB consists of indoor

object images. Thanks to the distinct characteristics of

the benchmarks, we can validate not only effectiveness,

but also robustness of our approach.

We perform various memory reduction and quanti-

zation methods for our method, resulting in two orders

of magnitude of memory reduction compared to uncom-

pressed features. On average, our method takes 0.7 s for

searching images given a query image on Oxford 105k.

Details on these methods are available at the supp. re-

port.

4.2 Benefit of using multiple regional descriptors

Before showing the effect of our similarity measure-

ment, we first demonstrate the benefit achieved mainly

from our image representation. For this, we compare re-

calls of two different types of features: the global feature

extracted from a whole image and our local feature ob-

tained from regions, under a simple similarity measure,

the L2 distance.

As shown in Table 2, our method using local fea-

tures from the regions provides higher recalls than the

method using a single global feature across all the bench-

mark datasets. Our multiple features capture the details

of an image effectively that can be missed in the global

feature, and this is the main reason for improved recalls.

4.3 Effects of the proposed method

We now demonstrate the effectiveness of our proposed

method using the multiple features and the rank-based

voting method as the similarity measurement. We com-

pare its accuracy against that of a general image search

scheme that uses the single global feature and L2 dis-

tance metric. To test robustness of our method, we per-

form experiments with four different image descriptors,

which are features from CaffeNet and VGG-19 without

any post-processing and ones with PCA-whitening.

Table 3 shows the accuracy of two different methods

combined with each descriptor. In spite of the diverse

conditions, our approach consistently improves the ac-

curacy for all the cases over the general image search

method. Based on the high recall from our image rep-

resentation, our rank-based voting effectively matches

and scores regional features and returns accurate search

results. On average, our method improves the accu-

racy relatively by 29% on Holidays, 13% on UKB, and

surprisingly, 105% on Oxford 5k. Thanks to the small

visual variances of buildings and frequent viewpoint

changes in Oxford 5k, multiple local features work much

better than a single global feature on this dataset.

4.4 Comparison with the state-of-the-arts

So far, we discussed benefits of our image representation

and similarity measure methods. We now compare the

search accuracy of our approach with the state-of-the-

art image search methods that also utilize CNNs. Before

comparing the accuracy with other methods, we cate-

gorize the methods according to their main objectives.

The first category, the improved descriptors category,

includes approaches that propose compact descriptors

with improved accuracies [2,1,16,30,6]. The second cat-

egory, improved similarity measurements category, con-

sists of approaches proposing novel similarity measure-

ments for utilizing multiple regional features [22,31].

The main objective of the first category is improv-

ing discriminative power of a descriptor, while main-

taining the memory efficiency. On the other hand, the

second category focuses on improving search results by

effectively utilizing larger amount of information from

images. Since it is not reasonable to compare the ac-

curacy directly between the memory-efficient methods

and accuracy-focused methods, we show results of these

two categories separately in Table 4.

In Table 4, we present results without any post-

processing, i.e., query expansion, re-ranking, or spa-

tial verification, for fair comparison. We also show the

results of our approach using both CaffeNet [15] and

VGG-19 [26], to clearly compare the performance with
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Fig. 5 Comparison of qualitative results between SPoC and ours. The leftmost images are queries, and right images are
the results in order. In each row, the top images represent the result of SPoC, and the bottom images show the result of our
method. We mark the correctness of a result image with a color bar above the image. Green and red bars indicate true positives
and false positives, respectively. Blue bar indicates “junk” images of the Oxford5k dataset, which contain the correct building
to the query but with high occlusion or distortion. We also mark the regions with a high voting score on our result images.
Our method works well for the queries where SPoC finds correct images well (top row). Moreover, our method shows good
performance even for the queries where SPoC cannot retrieve correct images well (middle and bottom rows).

Table 4 Comparison of accuracy of the state-of-the-art
search methods. Methods in the improved descriptors cat-
egory generate memory-efficient compact features, and meth-
ods in the improved similarity measurement category propose
new similarity measures utilizing multiple regional features.
Results marked with an * are achieved with retrained or fine-
tuned networks.

Holidays Oxford 5k UKB
Methods mAP mAP recall@4

Improved descriptors
Neural code [2] 0.793* 0.557* 0.890*

SPoC [1] 0.784 0.657 0.915
CroW [16] 0.851 0.708 -

R-MAC [30] - 0.669 -
DeepIR [6] 0.891* 0.831* -

Improved similarity measurements
Off-the-shelf [22] 0.843 0.680 0.911

ONE [31] 0.887 - 0.968
Ours with CaffeNet 0.907 0.735 0.957
Ours with VGG-19 0.917 0.768 0.970

others. Among those methods, neural code and off-the-

shelf used the networks with the CaffeNet structure,

and other methods used the VGG structure.

Methods in the improved descriptors category show

great performance with a single global feature. Neural

code [2] improves the descriptor for each benchmark by

retraining the networks. SPoC [1], CroW [16], and R-

MAC [30] enhance descriptors with their own aggrega-

tion methods. They implicitly embed spatial informa-

tion into the descriptors with centering prior, spatial

weighting, and max-pooling, respectively. While other

methods use the networks originally trained for image

classification, DeepIR [6] trained the networks based

on image similarities. With this search-specialized net-

work, it shows the best performance among the meth-

ods in the first category, and even shows better per-

formance than the methods in the second category for

some cases. Since these approaches propose single com-

pact descriptors, all of them are highly memory-efficient.

As the second category utilizes additional informa-

tion from images, techniques in the category can show

better accuracy than that of the first category on the

condition of using equally trained networks. Fig. 5 shows

qualitative comparisons between ours and SPoC. In the

second category, Off-the-shelf [22] uses an average L2
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Fig. 6 This figure shows that using our relation term
RelS(·, ·) improves ranking of true positive images, resulting
in a higher accuracy.

distance, and ONE [31] utilizes NBNN for similarity

measure. Comparing the results with the same network

structures, our rank-based voting achieves better accu-

racy than others across all the benchmarks. Also, com-

pared to the ONE method using 220 regions per image,

our method achieves higher accuracy with 68% of the

regions, i.e., 150 regions per image. Furthermore, our

method does not require any additional datasets dur-

ing the search process, while ONE requires additional

categorized feature sets for the similarity measure due

to the nature of NBNN.

Discussions. While we compared different meth-

ods in two different categories, they can be combined

together, since their goals, improving image descriptors

and similarity measurements, are complementing each

other. As shown in Table 3, our method consistently

improves the accuracy over various descriptors by us-

ing them as multiple regional features instead of single

global features. Also, DeepIR [6] leverages the network

trained with triplet ranking loss. Since the ranking loss

is evaluated based on image similarity ranks, this net-

work brings improvement to image search than the gen-

eral networks trained with the classification loss. While

our method currently utilizes the networks trained with

the classification loss, it can be further improved by

leveraging the network trained with the ranking loss.

Nonetheless, our method even with the classification

loss shows higher accuracy than DeepIR in two of three

tested benchmarks.

Effects of relation term. We analyze the effect of

relation term in our voting method. In order to study

the effect attributed by the relation term RelS(·, ·), we

(a) Accuracy according to k (b) Accuracy according to v

Fig. 7 (a) shows the accuracy according to k, the number
of representative regions in each image. Accuracy increases
as k increases, but its rate becomes smaller as k becomes
larger. (b) shows the accuracy as a function of v, the number
of retrieved regions from each query region. We also observe
the similar trend to that of k.

compare search accuracy w/ and w/o using RelS(·, ·)
(Table. 1). We found that using the term improves accu-

racy, especially for difficult cases, where incorrect

matches occur frequently. Since it gives higher weights

to more confident matches, impacts of incorrect matches

relatively decrease. Therefore, it improves the final rank-

ing of correct images appropriately as shown in Fig. 6.

4.5 Scene completion as an application

We apply our image search method to the application of

scene completion that utilizes similar images identified

from an image database [7]. Although we use a small

size of the dataset, our search method effectively finds

visually similar images to an input query. Fig. 2 shows

two example images of the application based on our

image search method.

4.6 Analysis

Our similarity measurement method uses two param-

eters k and v, which are the number of representative

regions in an image and the number of retrieved regions

from a query region, respectively.

Fig. 7 shows retrieval accuracy as a function of k

and v, individually. Interestingly, all data represent a

similar tendency, where accuracies rapidly increase in

early phases and slowly keep increasing until they reach

the stable points. As the results indicate non-decreasing

shapes, our method can show its best performance by

simply assigning large values to k and v. Nonetheless,

larger k and v need more time and memory resources.

As a result, we set k = 150 and v = 250 for our ex-

periments as a practical balance between the time and

memory requirements.
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5 Conclusion and Future Work

We have introduced a novel image search method, which

uses representative regions with an associated similarity

measure, to improve the search accuracy. Our similarity

measure incorporates the spatial relation of regions and

improves the confidence of the matching. We observed

that the proposed algorithm achieves the best accuracy

among the methods using equally trained networks.

There are many interesting directions to further im-

prove the performance for image search. Our method

showed accuracy improvement by adopting the state-of-

the-art region proposal and pre-trained CNN features.

Fortunately, our method is well modularized, so there

is a high chance to be combined with new cutting-edge

object localization methods or new discriminative fea-

tures. Second, our method achieved higher accuracy by

utilizing the inclusion relationship of regions. Embed-

ding a high-level spatial relation into the similarity mea-

sure can further increase the search accuracy.
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