
Probabilistic Cost Model for Nearest Neighbor Search in

Image Retrieval

Kunho Kima, Mohammad K. Hasana, Jae-Pil Heoa, Yu-Wing Taia, Sung-eui
Yoona,b

aDept. of Computer Science, KAIST
bDiv. of Web Science and Technology, KAIST

Abstract

We present a probabilistic cost model to analyze the performance of the

kd-tree for nearest neighbor search in the context of content-based image

retrieval. Our cost model measures the expected number of kd-tree nodes

traversed during the search query. We show that our cost model has high cor-

relations with both the observed number of traversed nodes and the runtime

performance of search queries used in image retrieval. Furthermore, we prove

that, if the query points follow the distribution of data used to construct the

kd-trees, the median-based partitioning method as well as PCA-based parti-

tioning technique can produce near-optimal kd-trees in terms of minimizing

our cost model. The probabilistic cost model is validated through experi-

ments in SIFT-based image retrieval.

Keywords: Image retrieval, nearest neighbor search, kd-tree

Preprint submitted to Computer Vision and Image Understanding May 14, 2012

1. Introduction1

The nearest neighbor search [1] is one of the most widely used proximity2

queries with various applications such as image retrieval [2], pattern recogni-3

tion [3], etc. In this paper we focus on exact or approximate nearest neighbor4

search queries used for content-based image retrieval (CBIR). In CBIR, var-5

ious image features such as SIFT [4] are used for finding similar images in6

image databases. In order to find the similar images reliably, multiple fea-7

tures (e.g., around 1 K features) are typically extracted from each query8

image. The problem of CBIR then becomes finding the nearest neighbor9

image such that its image features match closely with those from the query10

image.11

Since the number of images in an image database can be very large, a12

kd-tree [5] or kd-tree forest [6] has been widely used to accelerate the perfor-13

mance of nearest neighbor search. In CBIR, however, the dimension of image14

features is very high. For example, the dimension of a SIFT feature vector15

for a single feature point in an image is 128. Thus, finding the exact near-16

est neighbor in the image database can be very slow. A common practice in17

CBIR is to find an approximate nearest neighbor instead of the exact nearest18

neighbor, by limiting the number of nodes traversed during the traversal of19

kd-trees [7].20

In order to construct the kd-trees for CBIR, we need to partition the21

image feature points contained in a node into its two child nodes. This is22

performed with a hyperplane, which is defined by its normal and position23

2

.

Partitioning
hyperplane

Partitioning
normal

Partitioning
value

Figure 1: 2D example of a partitioning hyperplane.

(Fig. 1). The normal and position of the hyperplane can be called as the24

partitioning normal and the partitioning value respectively.25

Optimizing kd-trees has been actively studied in recent years [8, 9], since26

constructing a high-quality kd-tree is critical for improving the performance27

of many CBIR techniques. These prior techniques improve the performance28

of nearest neighbor search by computing a partitioning normal that separates29

feature points well and reduces computation overheads of accessing nodes at30

the query time. In order to split the feature points in a node, the mean or31

the median point along the chosen partitioning normals are typically selected32

as the partitioning values. However, to the best of our knowledge, there has33

been no prior work that quantifies the quality of kd-trees in a cost model for34

CBIR and optimizes partitioning values and normals with the cost model.35

Contributions: In order to quantify the quality of kd-trees and36

hence to evaluate the performance of the nearest neighbor search in CBIR,37

3

we propose a probabilistic cost model (Sec. 4) that measures the expected38

number of nodes traversed during the process of the search query. We have39

also proved that the conventional wisdom of partitioning data points in each40

node of kd-trees in the median point along a partitioning normal that is41

close to the principal directions of the data points can produce near-optimal42

kd-trees, given our proposed cost model (Sec. 5). Our cost model and as-43

sumptions are validated through experiments in SIFT-based image retrieval,44

which show strong linear correlations (i.e. up to 0.9) between our cost model45

and both the observed number of nodes traversed and the running time spent46

for queries used in CBIR applications (Sec. 6). These results can be served as47

a theoretic basis for other optimization problems such as updating kd-trees,48

to achieve a high performance for dynamic data sets.49

2. Related Work50

In this section we review prior techniques on content-based image retrieval51

(CBIR) and optimizing kd-trees. We discuss examples most relevant to our52

works and refer reader to [2] for the survey of recent approaches in CBIR.53

2.1. Image Retrieval54

Given a query image, CBIR compares the image features of images from55

an image database with the features from the query image, and returns the56

images that are most similar to the query image. Such CBIR problem can57

be reduced to the well-known nearest neighbor problem. Data structures58

4

such as kd-tree [5] are widely used to efficiently process the nearest neighbor59

problem, which performs the matching between query features and image60

features stored in the image database [2].61

Unique in CBIR, the dimension of image features are usually very high.62

Using a kd-tree for accessing such high-dimensional data is well-known to be63

very slow, since the nearest neighbor computation algorithms have to tra-64

verse most nodes of a kd-tree. Hence, approximate nearest neighbor search65

algorithms [7] that use a priority queue and/or the best-bin-first search66

technique [4] have been commonly adopted in CBIR. Recently, Muja and67

Lowe [10] presented an automatic tuning algorithm for various kd-tree based68

approximate nearest neighbor search methods.69

Visual words [11] (or bag-of-features), vocabulary tree [12], and locality70

sensitive hashing [13] are some of the popular techniques for large CBIR sys-71

tems. A recent study by Philbin et al. [6] showed that performing nearest72

neighbor computation with kd-trees outperforms the technique using the vo-73

cabulary tree in terms of K-means clustering. It has also been shown that74

quality of searching results of locality sensitive hashing can be inferior to75

those of kd-trees [8]. While these previous works are related, we focus our76

analysis on evaluating kd-trees for high quality nearest neighbor computa-77

tion. Our results will be useful to evaluate the performance of kd-trees.78

5

2.2. Optimizing kd-Trees79

A few techniques have been proposed to improve the quality of kd-trees80

for the acceleration of tree access in CBIR. Silpa-anan et al. [8] proposed81

to create multiple kd-trees for an input data set and use them together as a82

concurrent search with a pooled priority queue. They have also demonstrated83

that a higher performance can be achieved by aligning the principal axis of84

data with the partitioning normal of a partitioning hyperplane used for data.85

Recently, Jia et al. [9] proposed a binary combination of axis-aligned axes for86

partitioning normals for kd-trees, instead of using arbitrary axes.87

Once a partitioning normal is decided as proposed in above techniques, a88

mean value or a median value along the chosen partitioning normal is used to89

define a partitioning hyperplane. While this is a common practice, there have90

been no prior techniques that pay attention to optimizing the partitioning91

value along a chosen partitioning normal.92

Optimized kd-trees for ray tracing: kd-trees have been widely used93

in other applications, especially ray tracing in the field of computer graphics.94

It has been widely known that the quality of kd-trees plays one of the key95

factors that govern the performance of ray tracing and, thus, optimizing96

kd-trees for the application has been actively studied. For kd-trees used97

in ray tracing, the Surface Area Heuristic (SAH) metric that measures the98

traversal cost during the kd-tree traversal is proposed [14]. Also, various kd-99

tree construction techniques [15, 16, 17] that optimize the metric have been100

presented. However, the usage of kd-trees for ray tracing is different from101

6

that for image retrieval; the structures and ordering of polygons used for102

kd-trees in ray tracing are very different from the one in image retrieval. As103

a result, it is unclear how the metric proposed for ray tracing can be applied104

to image retrieval.105

2.3. Cost Models for kd-Trees106

The database and computational theory communities have been devel-107

oping various cost models for proximity queries including nearest neighbor108

search accelerated by spatial data structures such as kd-trees or R-trees.109

Bentley [18] introduced the concept of kd-trees and intuitively suggested110

that the median-based partitioning scheme for the kd-tree construction leads111

to the optimal tree in terms of a path length computed from the root node112

to a leaf node. This claim was an intuitive generalization of the optimality113

of one dimensional binary trees [19] to higher dimensional trees.114

Friedman et al. [5] proposed a cost model for processing nearest neighbor115

search. Their cost model estimates the number of leaf nodes accessed in the116

kd-tree, while processing nearest neighbor queries. Extensions from the cost117

model [5] have been proposed for other spatial data structures like R-tree [20]118

and non-rectangular regional nodes [21]. However, these cost models have119

an unrealistic assumption that the number of data points is assumed to be120

infinite [22]. Lee and Wong [23] gave an worst-case analysis of balanced kd-121

trees for region queries in terms of the total number of node visits as a cost.122

Their worst-case analysis indicates that the dominant factor in the cost is the123

7

dimensionality of data points. Sproull [24] later pointed out that these cost124

models are valid, when the number of points is exponential increasing as a125

function of the dimensionality of data points, in order to dilute the boundary126

effect. Arya et al. [25] developed an improved cost model that considers127

the boundary effect, but has an unrealistic assumption about the number of128

points as Sproull [24] pointed out. Berchtold et al. [26] proposed a cost metric129

mainly for high dimensional data, while the prior model of Friedman et al. [5]130

overestimates the cost by orders of magnitude for uniformly distributed high-131

dimensional data. Unfortunately, this method relied on the expensive Monte132

Carlo integration for evaluating the cost model, because the cost model is too133

complex to be calculated directly. Furthermore, it requires a huge number134

of samples for the Monte Carlo integration to achieve a reasonably accurate135

approximation. As a result, this model has been applied to a small scale of136

kd-trees.137

These various cost models have been designed mainly for range queries138

and investigated in theoretical contexts. As a result, it is unclear how well139

these cost models are applicable to our domain, nearest neighbor search for140

high-dimensional image descriptors used in CBIR. Moreover, cost models141

proposed in theoretical communities makes assumptions inappropriate for142

CBIR. Some of them include that data points are uniformly distributed.143

8

3. Access Patterns on kd-Trees and Terminologies144

In this section we describe how a kd-tree is accessed given a query image145

for image retrieval. We will also define the terminologies used for the rest146

of the paper. We assume that the kd-tree is constructed based on image147

features (e.g. SIFT), and the same type of image features are extracted from148

the query image for searching nearest neighbor images.149

Given an image feature, qi, of a query image, we start to traverse the150

kd-tree from the root node of the kd-tree. During the kd-tree traversal, we151

maintain two variables: 1) the current minimum distance, mind, and 2) the152

current candidate for the nearest neighbor feature that has the current min-153

imum distance to the query image feature qi. The initial minimum distance154

is set as infinity before traversal. Since there are many methods to traverse a155

kd-tree, we analyze two of the most common methods, the depth-first traver-156

sal [1, p.517] and the best-bin-first search [27].157

Depth-first traversal (DFT): The DFT is the simplest traversal158

method for the nearest neighbor search. In this scheme, once we visit an159

intermediate node, we compare the features in its left and its right child160

nodes to the given image feature qi. We traverse the child node that is closer161

to the given image feature and store the other child node in a stack, called162

traversal stack. Once we visit a leaf node, we measure the distance between163

qi and each image feature stored in the leaf node. We pick the image feature,164

qk, stored in the leaf node that gives the shortest distance to qi, and check165

whether the shortest distance is smaller than the current minimum distance166

9

mind. If so, we update both the current candidate for the nearest neighbor167

as qk and the current minimum distance as the distance between qi and qk.168

Then we pop a node from the traversal stack and access the node. This169

operation is commonly known as back-tracking. The process is performed170

recursively until the traversal stack becomes empty.171

Culling techniques: The DFT is simple, but has to access all the172

nodes of the kd-tree, leading to a slow performance. A simple remedy to173

this problem is to employ various culling techniques. The most common174

culling method is to utilize a conservative distance bound; let us call this175

culling method conservative distance culling. For example, we can compute176

a conservative distance bound between the query point and the bounding box177

of a node of a kd-tree. If the conservative bound is bigger than the current178

minimum distance mind, we cull the traversal operations on the child nodes179

located in the sub-tree of the node.180

Best-bin-first search (BBFS): The BBFS has been known to show181

a higher performance than the DFT. The BBFS attempts to access nodes182

that are likely to have nearest neighbor points earlier than other nodes. To183

traverse kd-trees, the BBFS uses a priority queue instead of a stack. For each184

intermediate node, ni, the BBFS computes a conservative distance bound185

between the query’s image feature qi and two child nodes of ni. We traverse186

the child node that gives the smaller distance bound and store the other187

node into the priority queue with its conservative distance bound. Once we188

reach a leaf node, we perform the back-tracking operation, which dequeues189

10

a node from the priority queue that gives the smallest distance bound and190

recursively traverse the node.191

Approximate search: Approximate search is a common method to192

further speed up the kd-tree traversal by trading off the quality of search193

results. The approximate search is applicable for both DFS and BBFS kd-194

tree traversal methods. Typically, approximate search is achieved by limiting195

the number of traversed nodes during the kd-tree traversal, or by interrupting196

the search process based upon a real time clock. It has been well-known that197

if we limit the number of traversed nodes more, the quality of search results198

deteriorates.199

Terminologies: We define T (n) of a node n to denote the expected200

number of traversed nodes under the sub-tree of the node n, when the node n201

is accessed. We use nl and nr to denote the left and the right child nodes of a202

node n respectively. We also define P[nl|n] to denote a conditional probability203

that the left node nl is traversed, given the node n is accessed; P[nr|n] is204

defined in a similar manner with the right node nr. We use npdf (i) to denote205

the probability distribution function for values of image features that are206

projected onto the chosen partitioning normal given a node n, where i is207

in the range of the minimum, m, and the maximum values, M , among the208

projected values.209

Assumptions for mathematical derivations: In order to simplify210

our derivations for the sake of the clarity, we make a few assumptions: 1)211

each leaf node of a kd-tree contains only a single image feature, 2) when we212

11

partition image features of a node n with a hyperplane that has a partitioning213

value p and a chosen partitioning normal, we assign image features whose214

values are equal to or less than the partitioning value p into the left node of215

the node n, and others into the right node, and 3) we treat the values of image216

features as continuous. Note that all of these assumptions are introduced to217

simplify our derivations, and all of our theoretic results can be shown to be218

valid even with kd-trees that do not satisfy such assumptions, after minor219

modifications to our derivations.220

In the following sections we explain how each one of these assumptions221

are used for deriving our cost model and its theoretical results. Note that222

our cost model measures the expected number of nodes traversed during the223

kd-tree traversal. We would also like to point out that our cost model is224

still useful for approximate queries that is performed with a fixed number of225

traversed nodes. For example, if our cost value for a kd-tree, T1, is less than226

that of another tree, T2, it also means that given a fixed number of nodes227

traversed during the kd-tree traversal, T1 can lead to more accurate results as228

compared with T2. In this case, we show that our cost model has correlations229

with a quality measure on results of approximate queries. More specifically,230

we use a distance error ratio as the quality measure. This distance error231

ratio measures how much the distance between a nearest neighbor computed232

within the fixed number of traversed nodes and the query point is over the233

ground-truth shortest distance of the nearest neighbor to the query.234

12

4. Probabilistic Cost Model235

We define our probabilistic cost model that quantifies the quality of the236

kd-tree by measuring the expected number of nodes traversed during the237

nearest neighbor search. Once we access a node, we can access its left or its238

right child nodes, irrespective of different traversal methods on a kd-tree for239

nearest neighbor search queries. Therefore, we define our probabilistic cost240

model for a node n that measures the expected number of nodes traversed241

under the sub-tree rooted at the node n in a recursive manner, as follows:242

T (n) = 1 + P[nl|n]T (nl) + P[nr|n]T (nr), (1)

where 1 is added after the node n is traversed. Note that we can easily extend243

our cost model to include costs incurred by computing distances between the244

query image feature and features contained in leaf nodes. This is because such245

cost linearly depends on the number of image features contained in each leaf246

node. However, in order to simplify our discussions, we intentionally ignore247

such costs.248

The problem is now reduced to how to accurately define the two condi-249

tional probabilities, P[nl|n] and P[nr|n], such that they can reflect the actual250

performance of kd-tree traversal. There are two main factors for computing251

these probabilities: 1) the distribution of image features of potential query252

images, and 2) the local geometric configurations of image features around253

the node n and its neighboring nodes.254

13

(a) Avg. num. of traversed nodes

(b) Distance error ratio

Figure 2: The left figures show correlations between the depth-first traversal (DFT) w/
and w/o culling, in terms of both the number of nodes traversed to find the exact nearest
neighbor given query image features and distance error ratios given a fixed number of
traversed nodes. The right figures show the correlations between the DFT and best-bin-
first search (BBFS) in the same settings used for the left figures.

Effects of culling and traversal methods: Many different culling255

techniques including the conservative distance culling can be used. These256

culling techniques as well as traversal methods can affect conditional prob-257

abilities of nodes. We found that it is very hard to consider effects caused258

by these culling and traversal methods, since these effects depend on the259

local geometric configurations of data stored on a node and its neighboring260

nodes. We, however, make an interesting observation: it is highly likely that261

employed culling or traversal methods do not change the relative qualities262

of different kd-trees. In other words, if a kd-tree, T1 has a fewer number263

of traversed nodes than another tree, T2, then T1 is likely to give a fewer264

number of traversed nodes than T2 even with culling techniques.265

14

To verify this observation, we measure correlations between the DFT266

with and without culling in terms of the number of traversed nodes that267

have been performed to find the nearest neighbor node given a query. To268

measure correlations, we construct 500 different kd-trees with image features269

from the Caltech 101 image benchmark that consists of around 10 K images;270

The details about how these 500 different kd-trees are constructed will be271

given in Sec. 6. We perform 10 K different queries used for SIFT-based image272

retrieval for each kd-tree. These queries are chosen from images that are in273

the same benchmark, but are not used for the tree construction.274

Correlation results are plotted in Fig. 2 that contains results for both275

exact and approximate search queries. For Fig. 2-(a) representing results276

from the exact search queries, the x-axis is the number of nodes traversed277

by DFT without culling, and the y-axis is the number of nodes traversed by278

DFT with culling or BBFS. The left of Fig. 2-(a) shows correlation, 0.99,279

between the DFT with and without using the conservative culling. We have280

also measured correlations between the DFT and BBFS, and we found that281

the correlation is also very high (i.e. 0.6) as shown in the right of Fig. 2-(a).282

A simple observation from this graph is that the number of nodes visited283

with and without culling are linearly correlated. For a query image, if the284

number of nodes visited is K in DFT without culling, then the number of285

nodes visited in DFT with culling is αK, where α is a number less than 1.286

We have also checked the correlations in approximate nearest neighbor287

search queries. In this case, we measure correlations in terms of distance288

15

DB Images Query images

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

Values (log scale)

F
re

q
u

e
n

c
y
 r

a
ti
o

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

Values (log scale)

F
re

q
u

e
n

c
y
 r

a
ti
o

(a) Caltech 101

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

Values (log scale)

F
re

q
u

e
n

c
y
 r

a
ti
o

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

Values (log scale)

F
re

q
u

e
n

c
y
 r

a
ti
o

(b) UKBench

10
0

10
1

10
20

0.05

0.1

0.15

0.2

Values (log scale)
10

0
10

1
10

20

0.05

0.1

0.15

0.2

Values (log scale)

(c) Oxford

Figure 3: This figure shows distributions of values of SIFT image features; the top and bot-
tom curves are computed from images of Caltech 101, UKBench, and Oxford benchmarks
respectively. We use randomly chosen 500 images from Caltech 101 and UKBench (that
create 100 K features), and 5000 images from the Oxford benchmark (that creates 1 M
features) for building kd-trees (left figures under “DB Images”) and another 500 images
(that create another 10 K features) for runtime query images (right figures under “Query
images”).

error ratios. Again, we observe a high correlation, 0.99, and 0.81, in Fig. 2-289

(b) for the DFT with and without culling, and for the DFT and the BBFS290

respectively. Since there is such high correlation relationship, both in the291

exact nearest neighbor search and the approximate nearest neighbor search,292

we do not consider the effects caused by culling and traversal methods within293

our cost model. Nonetheless, we believe that our model is valid for kd-tree294

traversal method with culling or BBFS.295

16

Distribution of potential query images: Fig. 3 shows the dis-296

tributions of SIFT image features in our tested image benchmark datasets,297

Caltech 101, UKBench, and Oxford [6]. We simply project values of all the298

dimensions of these image features into one dimensional space to draw the299

distributions. We draw distributions of these values of image features drawn300

from different image sets of the same benchmark and drawn from different301

images of two different benchmarks. Even though they are computed from302

different images across different image benchmarks, these distributions have303

a nearly similar tendency. This is because inside natural images, most re-304

gions are smooth regions or regions with small gradients [28] and our plotting305

on the image features agrees with such natural image statistics. Hence, we306

can expect the distribution of potential query images follows the same distri-307

bution as the distribution of image features that were used to construct the308

kd-tree from an image database.309

Now, we can define our final cost model. As discussed above, we do not310

consider the effects of culling and traversal methods such as BBFS, since they311

do not drastically change the relative qualities of kd-trees. Also, we assume312

that the distribution of image features of query images follows that of image313

features stored in the kd-tree. Then the conditional probability P[nl|n] for the314

left node given a node n can be computed as
∫ p

m
npdf (i), where p is the chosen315

partitioning value used for defining a partitioning hyperplane. Similarly,316

P[nr|n] is defined as
∫M

p+
npdf (i). We use the range of (p,M] for P[nr|n], since317

we assumed that image features that have the partitioning value p is assigned318

17

to the left node. As a result, our final cost model is defined as follows:319

T (n) = 1 +

∫ p

m

npdf (i)T (nl) +

∫ M

p+

npdf (i)T (nr). (2)

Our cost model will be validated with SIFT-based image retrieval in320

Sec. 6.321

5. Near-Optimal Partitioning Value322

In this section we prove that a near-optimal partitioning value exists323

given a chosen partitioning normal, to define a partitioning hyperplane for324

the high-quality kd-tree construction. Also, we show that the median-based325

partitioning can achieve a near-optimal result given our probabilistic cost326

model.327

5.1. Lower Bound of Our Cost Model328

We first show a lower bound of our cost model.329

Lemma 5.1. The following equation has the minimum value of −1, when330

x = 1
2
:331

y = x log x+ (1− x) log (1− x), (3)

where the logarithm function uses base 2 and 0 < x < 1.332

Proof: We rewrite y as the following:333

y = x
lnx

ln 2
+ (1− x)

ln (1− x)

ln 2
.

18

We calculate its first derivative, dy
dx

:334

dy

dx
=

1

ln 2
(lnx+ 1)− 1

ln 2
[1 + ln (1− x)]

=
1

ln 2
[lnx− ln (1− x)].

The first derivative becomes 0, when x = 1
2
. In order to confirm whether335

y has the global minima or maxima with x = 1
2
, we compute the second336

derivative, d2y
dx2 :337

d2y

dx2
=

1

ln 2
[
1

x
+

1

1− x
].

Since 0 < x < 1, values of the second derivative are always positive. As a338

result, y has the minima, −1, when x = 1
2
. �339

Theorem 5.1 (Lower Bound). Given a kd-tree with k image features, the340

cost for this kd-tree according to our probabilistic cost model (Eq. 2) is at341

least 1 + log k.342

Proof:343

Suppose that a node n has k image features under the sub-tree rooted at344

n. We define f(n) to be the probability of accessing the left child node nl345

after accessing node n; that is f(n) = P[nl|n]. Equivalently, 1− f(n) = P[nr|n]346

is the probability of accessing the right child node nr. Then, the left child347

19

node nl has kf(n) image features 1 under its sub-tree, while the right child348

node nr has k(1−f(n)) image features. For any intermediate node, the range349

of x is in (0, 1), since some probability exists to access its child nodes.350

Our cost model shown in Eq. 2 can be rewritten as follows:351

T (n) = 1 + f(n)T (nl) + (1− f(n))T (nr). (4)

We first prove that T (n) ≥ 1 + log k by induction. The base case arises352

when a node n is a leaf. In this case, T (n) = 1, since the number of traversed353

node is 1 for the leaf node. Since we assumed that each leaf node, nleaf has354

a single image feature, T (nleaf) ≥ 1 + log(1). 2
355

Let us consider cases when a node n is intermediate and thus k > 1. We356

start from the assumption for two child nodes of the node n: T (nl) ≥ 1 +357

log (kf(n)) and T (nr) ≥ 1 + log (k(1− f(n))). Then, T (n) can be rewritten358

1For the sake of clarity, we allow a continuous number of image features in our deriva-
tion. One can prove our theorem in a discrete manner by taking similar steps shown in
the paper.

2If a leaf node has multiple image features, we can extend our derivation by showing
T (n) ≥ log k + c, where c is a constant.

20

as follows:359

T (n) = 1 + f(n)T (nl) + (1− f(n))T (nr)

≥ 1 + f(n)(1 + log (kf(n))) + (1− f(n))(1 + log (k(1− f(n))))

= 2 + f(n) log k + f(n) log f(n) +

(1− f(n)) log k + (1− f(n)) log (1− f(n))

= 2 + log k +

f(n) log f(n) + (1− f(n)) log (1− f(n)).

According to Lemma 5.1, the term of f(n) log f(n)+(1−f(n)) log (1− f(n))360

has the minimum value of −1, when f(n) = 1− f(n) = 1
2
. As a result, even361

when the node n is intermediate, we can show that T (n) ≥ 1 + log k. And362

this proves the theorem. �363

As identified while we prove Theorem 5.1, the lower bound of our cost364

model is minimized when for every node, the conditional probability for365

accessing the left child node after accessing this node is exactly half. This366

does not directly indicate that our cost model is minimized at such case.367

Nonetheless, such case can be one of promising candidates for constructing368

optimal kd-trees given our cost model.369

5.2. Median-based Partitioning370

The derived lower bound of our probabilistic cost model for a kd-tree is371

minimized when for every node, the conditional probability of accessing its372

21

left node is exactly equal to that of the right node. In practice it may be373

impossible to partition image features of a node into left and right nodes374

with the equal conditional probabilities, since SIFT image features in each375

dimension have discrete values and there may be multiple features that have376

the same value along a chosen partitioning normal. The median point among377

image features of a node, however, can be a fairly good candidate to make378

nearly equal conditional probabilities for the left and right child nodes.379

In the same vein, partitioning normals that are close to be the principal380

eigenvectors computed with Principal Component Analysis (PCA) can serve381

as an excellent choice, especially when used together with median-based par-382

titioning, since they can lead to nearly equal conditional probabilities for383

child nodes. These partitioning normals have been demonstrated to work384

quite well in practice [8, 9].385

In this section we show that median-based partitioning produces near-386

optimal kd-trees in terms of minimizing our cost model.387

Consider a kd-tree constructed using median-based partitioning. Accord-

ing to our cost model, the cost of a node n of the kd-tree containing k image

features can be written as follows:

T (n) = 1 +
dk/2e
k

T (nl) +
bk/2c
k

T (nr),

where dk/2e and bk/2c image features are assigned to the left and right nodes388

respectively.389

22

Given a kd-tree constructed by median based partitioning, one can ob-390

serve that the cost of the tree only depends on the number of image features.391

Let S(k) denote the cost of a kd-tree that is computed by median-based par-392

titioning and has set of k image features. S(k) can be recursively defined as393

follows:394

S(k) =

1 if k = 1,

1 + l
2l
S(l) + l

2l
S(l) if k = 2l for some l ≥ 1,

1 + l+1
2l+1

S(l + 1) + l
2l+1

S(l) if k = 2l + 1 for some l ≥ 1.

395

396

When k is a power of two, we can easily show that S(k) realizes the lower397

bound, which is 1+log k, in the next lemma (Lemma 5.2). As a result, in this398

case kd-trees computed by median-based partitioning are optimal in terms399

of our cost model.400

Lemma 5.2. If k = 2t for an integer t ≥ 0, then S(k) = 1 + log k = 1 + t.401

Proof: We use induction to prove this lemma. In the basic step,402

t = 0 and k = 1. Then S(k) = 1 by its definition. Now suppose that403

k = 2t for some t > 0. Assuming that S(2t−1) = 1 + t − 1, we get that404

S(k) = S(2t) = 1 + 1
2
S(2t−1) + 1

2
S(2t−1) = 1 +S(2t−1) = 1 + 1 + t−1 = 1 + t.405

�406

In practice, however, k may not be a power of two. We now introduce a407

series of lemmas to prove that in general cases, costs, S(k), of kd-trees with408

k image features constructed by median-based partitioning is near-optimal.409

Suppose that two kd-trees are constructed by using median-based parti-410

23

tioning, but one kd-tree is constructed with k image features, while another411

one with k + 1 features. We then have the following lemma.412

Lemma 5.3. S(k + 1) > S(k) for k ≥ 1.413

Proof: We prove this lemma by induction. It is easy to see that414

S(1) = 1, S(2) = 1+ 1
2
S(1)+ 1

2
S(1) = 2, and S(3) = 1+ 2

3
S(2)+ 1

3
S(1) = 8/3.415

Therefore, when k = 1 or k = 2, we have S(k + 1) > S(k). We now show416

that S(k + 1) > S(k), when k = 2l + 1, an odd number greater than 1. We417

assume that S(t+ 1) > S(t) for 1 ≤ t ≤ 2l. Then,418

S(k + 1) = S((2l + 1) + 1) = S(2l + 2)

= 1 +
l + 1

2l + 2
S(l + 1) +

l + 1

2l + 2
S(l + 1) = 1 + S(l + 1)

= 1 +
l + 1

2l + 1
S(l + 1) +

l

2l + 1
S(l + 1)

> 1 +
l + 1

2l + 1
S(l + 1) +

l

2l + 1
S(l)

= S(2l + 1) = S(k)

Let us consider the case of k = 2l, an even number greater than 2. We419

can assume that S(t+ 1) > S(t) for 1 ≤ t ≤ 2l − 1.420

24

S(k + 1) = S(2l + 1)

= 1 +
l + 1

2l + 1
S(l + 1) +

l

2l + 1
S(l)

> 1 +
l + 1

2l + 1
S(l) +

l

2l + 1
S(l)

= 1 + S(l) = 1 +
l

2l
S(l) +

l

2l
S(l) = S(2l) = S(k)

This proves the lemma. �421

Corollary 5.1. S(k + t) ≥ S(k) for any integer t ≥ 0.422

Let a function ϕ : Z+ → Z+ to denote ϕ(k) = 2dlog ke; ϕ(k) is the smallest

positive integer greater than or equal to k such that ϕ(k) is a power of two.

If k itself is a power of two then ϕ(k) = k. This function’s useful properties

are given below:

ϕ(k) ≥ k (5)

log(ϕ(k)) ≤ 1 + log k (6)

S(ϕ(k)) = 1 + log(ϕ(k)) (7)

Equation 5 is obvious from its definition. Equation 6 comes from the423

fact that log(ϕ(k)) = log(2dlog ke) = dlog ke ≤ 1 + log k. Finally, Equation 7424

follows from Lemma 5.2 and the fact that ϕ(k) is a power of two. We now425

show a tight upper bound of S(K) based on the function ϕ.426

25

Lemma 5.4. S(k) ≤ 2 + log k427

Proof:428

S(k) ≤ S(ϕ(k)) [by Corollary 5.1 and (5)]

= 1 + log(ϕ(k)) [by Equation 7]

≤ 2 + log k [by Equation 6]

429

�430

431

For a kd-tree constructed by median-based partitioning, Lemma 5.4 shows432

that its cost is at most 2 + log k, where k is the number of image features.433

Theorem 5.1 shows that the cost of any kd-tree with k image features is lower434

bounded by 1 + log k. As a result, the following theorem naturally holds.435

Theorem 5.2 (Near-Optimality). Given our cost model (Eq. 2), let C436

to be a cost of a kd-tree with k image features constructed by median-based437

partition. Then C ≤ 1 + OPT , where OPT is the minimum cost of any438

kd-tree with the same set of those image features.439

This theorem indicates that median-based partitioning produces near-440

optimal kd-trees given our cost model.441

6. Experimental Validations442

We randomly choose 500 images from the Caltech 101 image benchmark443

and extract around 100 K SIFT features from those images for constructing444

the kd-trees. 500 different kd-trees are constructed by randomly choosing445

the partitioning values given the partitioning normals. For each kd-tree, we446

26

evaluate our cost model with the tree by measuring the cost value associ-447

ated with the root node of the kd-tree. We have also measured the number448

of traversed nodes to find the nearest neighbor features given 10 K query449

SIFT features. These 10 K SIFT features are extracted from different 500450

query images for our SIFT-based image retrieval. These query images are451

randomly chosen from the same image benchmark, but are not used for the452

tree construction.453

In this configuration, we found that our cost model shows a positive cor-454

relation, 0.526, against the average number of nodes traversed with the DFT.455

This correlation score is lower than the other correlation score presented in456

this paper. This is mainly because when we perform the exact search queries,457

the traversal methods tend to traverse most of nodes of kd-trees irrespective458

of the qualities of kd-trees. Because of this behavior of the exact nearest459

neighbor query, approximate search queries are typically used in practice.460

We have also measured the correlation by applying the same setting, but461

this time we use BBFS and culling with the UKBench benchmark. The462

correlation score goes up to 0.79.463

To further analyze the correlation of our cost model against the quality464

of kd-tree, we measure the time spent to traversing kd-trees. Our cost model465

shows a high correlations, 0.74, with the average time spent on performing466

exact search queries that run by using the BBFS in the UK Bench image467

benchmark and the Caltech 101 image benchmark.468

We check the correlation of our cost model with approximate nearest469

27

(a)DFT w/o culling (b)DFT w/ culling (c)BBFS
Caltech 101 image database

(d)DFT w/o culling (e)DFT w/ culling (f)BBFS
UKBench image database

Figure 4: This figure shows correlations of our cost model against the distance error ratios
achieved by (a)(d) the DFT w/o culling, (b)(e) DFT with culling, and (c)(f) BBFS in the
Caltech 101 and UKBench image databases.

neighbor search queries. In this case, we measure the correlation between470

values of our cost model and distance error ratios achieved when we limit the471

number of traversed nodes to 1 K nodes. Fig. 4 shows the correlations of our472

cost model against the distance error ratios achieved by different traversal473

methods for the Caltech 101 and UKBench image benchmarks. Our cost474

model shows high correlations, 0.89, 0.89, and 0.85, over DFT w/o culling,475

DFT w/ culling, and BBFS respectively in the Caltech 101 benchmark. We476

observe that our cost model shows similar, high correlations, 0.73, 0.73, and477

0.86, against DFT w/o culling, DFT w/ culling, and BBFS respectively in478

the UKBench image benchmark.479

We have also found that median partitioning consistently gives the lowest480

28

cost in term of both our cost model and the distance error ratios, as con-481

jectured in Sec. 5.2. More specifically speaking, a kd-tree constructed by a482

partitioning value among the median, m, and m± 1 given a node shows the483

best result, compared to those 500 different kd-trees that are constructed by484

randomly choosing the partitioning values.485

7. Conclusion486

We have presented a probabilistic cost model that measures the expected487

number of traversed nodes during the kd-tree traversal. Our cost model has488

demonstrated to have high correlations with the observed numbers of tra-489

versed nodes as well as the time spent on image search under different culling,490

traversal methods including exact and approximate queries. Furthermore,491

our cost model can explain why the commonly adopted partitioning meth-492

ods such as median-based and PCA-based techniques work well and showed493

that they can achieve a near-optimal quality for the kd-tree construction.494

Limitations and future work: There are many avenues for future495

research directions. First, we would like to see how well our theoretical496

and experimental results extend to web-scale image databases that consist497

of billions of images. In Sec. 4, we showed that culling and kd-tree traversal498

methods do not change the relative qualities of different kd-trees much and499

thus we do not consider them in our probabilistic cost model. However, it may500

be possible to consider a particular traversal algorithm (e.g., using multiple501

randomized kd-trees [10]) with culling and back-tracking properties in a cost502

29

model, and use it to construct a kd-tree that has a higher quality than the503

one constructed by the proposed probabilistic model. Moreover, we would504

like to extend our current cost model to consider the dimensionality of data505

points for more accurate estimation of costs. Also, we would like to apply506

our cost model and its optimal partitioning theorem to incrementally update507

the kd-trees for dynamic data sets in image retrieval. Prior approaches for508

dynamic image datasets are based on heuristic techniques that decide when509

and where to reconstruct kd-trees. However, through our cost model and510

optimal partitioning value theorem, we can approach this problem in a more511

rigorous manner. We wish that our cost model can serve as a theoretical512

basis that leads to more rigorous techniques for various problems related to513

nearest neighbor search queries including recent hashing techniques [29].514

Acknowledgements515

This work was supported in part by MEST/NRF (2011-0030822), MCST/516

KOCCA/CT/R&D 2011, MKE/KEIT [KI001810035261], MKE/MCST/IITA517

[2008-F-033-02], BK, DAPA/ADD (UD110006MD),MEST/NRF/WCU (R31-518

2010-000-30007-0), KMCC, and MSRA.519

References520

[1] H. Samet, Foundations of MultiDimensional and Metric Data Struc-521

tures, Morgan Kaufmann, 2006.522

30

[2] R. Datta, D. Joshi, J. Li, J. Z. Wang, Image retrieval: Ideas, influences,523

and trends of the new age, ACM Computing Survey 40 (2) (2008) 1–60.524

[3] K. Q. Weinberger, J. Blitzer, L. K. Saul, Distance metric learning for525

large margin nearest neighbor classification, in: NIPS, 2006.526

[4] D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV527

60 (2) (2004) 91–110.528

[5] J. H. Friedman, J. L. Bentley, R. A. Finkel, An algorithm for finding529

best matches in logarithmic expected time, ACM TOMS 3 (3) (1977)530

209–226.531

[6] J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval532

with large vocabularies and fast spatial matching, in: IEEE Conference533

on Computer Vision and Pattern Recognition, 2007, pp. 1–8.534

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Wu, An op-535

timal algorithm for approximate nearest neighbor searching, in: Symp.536

on Discrete Alg., 1994, pp. 573–582.537

[8] C. Silpa-Anan, R. Hartley, S. Machines, A. Canberra, Optimised kd-538

trees for fast image descriptor matching, in: IEEE Conference on Com-539

puter Vision and Pattern Recognition, 2008, pp. 1–8.540

[9] Y. Jia, J. Wang, G. Zeng, H. Zha, X.-S. Hua, Optimizing kd-trees for541

scalable visual descriptor indexing, in: CVPR, 2010.542

31

[10] M. Muja, D. G. Lowe, Fast approximate nearest neighbors with auto-543

matic algorithm configuration, in: VISSAPP, 2009, pp. 331–340.544

[11] J. Sivic, A. Zisserman, Video google: A text retrieval approach to object545

matching in videos, in: ICCV, 2003.546

[12] D. Nistér, H. Stewénius, Scalable recognition with a vocabulary tree, in:547

CVPR, 2006.548

[13] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive549

hashing scheme based on p-stable distributions, in: SoCG, 2004.550

[14] D. MacDonald, B. K.S., Heuristics for ray tracing using space subdivi-551

sion, Visual Computing 6 (3) (1990) 153–166.552

[15] I. Wald, V. Havran, On building fast kd-trees for ray tracing, and on553

doing that in O(N log N), in: Proceedings of the 2006 IEEE Symposium554

on Interactive Ray Tracing, 2006, pp. 61–69.555

[16] W. Hunt, W. Mark, G. Stoll, Fast kd-tree construction with an adap-556

tive error-bounded heuristic, in: IEEE Symposium on Interactive Ray557

Tracing 2006, 2006, pp. 81–88.558

[17] S. Yoon, S. Curtis, D. Manocha, Ray tracing dynamic scenes using se-559

lective restructuring, Eurographics Symp. on Rendering (2007) 73–84.560

[18] J. L. Bentley, Multidimensional binary search trees used for associative561

searching, Communications of the ACM 18 (1975) 509–517.562

32

[19] D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-563

Wesley, 1969.564

[20] C. Faloutsos, T. Sellis, N. Roussopoulos, Analysis of object oriented565

spatial access methods, in: ACM SIGMOD, 1987.566

[21] J. G. Cleary, Analysis of an algorithm for finding nearest neighbors in567

euclidean space, ACM Transactions on Mathematical Software (TOMS)568

5 (1979) 183–192.569

[22] C. Böhm, A cost model for query processing in high dimensional data570

spaces, ACM Transaction on Database Systems 25 (2000) 129–178.571

[23] D. T. Lee, C. K. Wong, Worst-case analysis for region and partial re-572

gion searches in multidimensional binary search trees and balanced quad573

trees, Acta Informatica 9 (1) (1977) 23–29.574

[24] J. F. Sproull, Refinements to nearest-neighbor searching in k-575

dimensional trees, Algorithmica 6 (1991) 579–589.576

[25] S. Arya, D. M. Mount, O. Narayan, Accounting for boundary effects in577

nearest neighbor searching, in: Symposium on Computational Geometry578

(SoCG), 1995.579

[26] S. Berchtold, C. Böhm, D. A. Keim, H.-P. Kriegel, A cost model for580

nearest neighbor search in high-dimensional data space, in: Proceed-581

ings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on582

Principles of database systems, 1997.583

33

[27] D. G. Lowe, Object recognition from local scale-invariant features, in:584

the International Conference on Computer Vision, 1999.585

[28] A. Torralba, A. Oliva, Statistics of natural image categories, Network:586

Computation in Neural Systems 14 (3) (2003) 391–412.587

[29] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, S.-E. Yoon, Spherical hashing, in:588

CVPR, 2012, to appear.589

34

