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Abstract
We present an interactive technique for gener-
ating realistic lightning. Our method captures
the main characteristics of the dielectric break-
down model, a physical model for lightning
formation. Our algorithm uses a distance-based
approximation to quickly compute the electric
potentials of different charge types. In particu-
lar, we use a rational function in lieu of summed
potentials to better produce interesting lightning
patterns. We also propose to use the waypoints
commonly available in many game scenes to
guide lightning shapes in complex scenes. We
found that our algorithm is two times faster
than the state-of-the art method with better
controls on lighting shapes, and can gener-
ate realistic lightning shapes interactively.

Keywords: lightning, interactivity, render-
ing

1 Introduction

Realistic simulation and rendering of natural
phenomena such as snow, rain, and lightning can
improve immersion in movies and games. In
movies, lightning is often used to set the mood
and emphasize fear. In games, it is frequently
used to portray realistic weather and represent
the effects of magic.

Unfortunately, generating realistic lightning
using physically-based techniques can be very
time consuming [1]. While this running time
may be feasible for movie production, they
are too slow for interactive applications like

∗Corresponding author.

Figure 1: A night scene with lightning generated
by our method. It takes 38 ms on a 128 x 128
grid by using a single core and is about 20 times
faster than using the conjugate gradient method
from [Kim and Lin, 2004].

games. As a result, current games utilize pre-
rendered images or approaches based on ran-
domized trees. Immersion in the game can be
hampered by the repetitive display of the same
patterns, and the low quality of the results.

In this paper, we propose an approximate,
physically-inspired method to interactively gen-
erate realistic lightning. Our algorithm aims to
reproduce the main characteristics of a physi-
cally based technique, the dielectric breakdown
model (DBM) [2, 1], but remove the depen-
dence on numerical solvers such as the conju-
gate gradient method. We first propose to rep-
resent the potential as a rational function that



combines different types of electric charges. We
then introduce additional controls for the light-
ning shape by combining of two parameters, η
and ρ, in our approximation method based on
a rational function (Sec. 4.1). Finally, we sug-
gest the use of waypoints to generate lightning
shapes for complex scenes (Sec. 4.2).

We have compared our method against
the DBM computed using conjugate gradient
method [1], and observe speedups of over two
orders of magnitude. We also compared our al-
gorithm against the state-of-the-art method, the
DBM approximation with a summation model
of potentials [3]. Our method shows roughly
twice as fast as this approach with better shape
controls, and we found that ours show better ap-
proximation to the DBM approach and thus a
wider applicability to different configurations.

2 Previous work

We review prior methods that are directly related
to our method.

2.1 Lightning Shapes

Reed and Wyvill [4] propose an empirical
method to generate lightning shapes based on
the observation that lightning branches are ran-
domly distributed at roughly 16 degrees. New
segments are generated by rotating about the
parent segment at an angle of about 16 degrees.
In the similar approach, Glassner proposes a
two-pass algorithm following the statistics of
the lightning [5]. A large-scale structure of the
lightning stroke is generated in the first step, and
then zig-zag patterns are added as details to a
long, straight stroke.

Niemeyer et al. presented a dielectric break-
down model (DBM) that physically explains di-
electric breakdown phenomena (e.g. lightning
and surface discharge) [2]. Thanks to its physi-
cal origins, DBM has been used widely for the
lightning simulation. We explain the algorithm
in detail in Sec. 3.

Sosorbaram et al. use DBM to generate light-
ning shapes [6], but utilize a local approxima-
tion to the electric potential field instead of solv-
ing the exact Laplace equation from the DBM.
Kim and Lin [1] propose a robust method to gen-

erate the lightning shape by solving the Laplace
equation with the conjugate gradient method.
However, creating the lightning shape can be
time-consuming because the conjugate gradient
method is an iterative algorithm. To improve
the computation time, methods that utilize adap-
tive meshes like quadtrees or octrees were pro-
posed [7, 8]. [3] propose a fast method that
simulates lightning using a distance-based ap-
proach. It is similar to [6], which uses an elec-
tric potential equation, but uses spherical coor-
dinates.

There are some approaches to generate light-
ning in real-time. Matsuyama et al. use the GPU
to solve the Laplace equation [9]. By limiting
the conjugate gradient method to two to four it-
erations, real-time rendering is achieved. Nvidia
provides a real-time DirectX 10 example that
uses geometry shader. Unfortunately, this ap-
proach is not physics-based.

In a different direction, Xu and Mould gener-
ate similar patterns using a path-planning based
approach that finds the least-cost paths on a
weighted graph within a randomly weighted
regular lattice [10]. In this paper, we propose a
physically-inspired method that generates light-
ning by better approximating the characteristic
value distributions of an electric potential field.

2.2 Lightning Rendering

How to render the atmospheric scattering of
lightning is also a significant problem. Tra-
ditional rendering techniques that use polygon
models show rather low quality for rendering
lightning.

Reed and Wyvill extended ray tracing to ren-
der the lightning stroke and glow [4]. Sosor-
baram et al. propose a volume rendering tech-
nique using a 3D texture [6]. Dobashi et al. use
hierarchically structured metaballs and precom-
puted lookup tables that store the integrated in-
tensity of light scattering [11]. Kim and Lin [1]
and Bickel et al. [7] utilize an atmospheric point
spread function, which describes the scattering
of light in participating media [12], as a convo-
lution kernel to render the final lightning.



Figure 2: The grid used for DBM. Black and
grey cells respectively represent the positive
charges on the ground and the negative charges
at the bottom of cloud. Blue cells are the next
candidates that could be added to the lightning.

3 Background

We first introduce the basic physics of the
lightning and explain the dielectric breakdown
model [2] for lightning simulation. We then
present the details of our method for quickly an-
imating and rendering lightning.

3.1 The Physics of Lightning

Lightning occurs when a large charge difference
exists between two areas such as a cloud and the
ground. 90% of all cloud-to-ground lightning is
downward negative lightning that occurs when
negative charges from a cloud, and spreads out
towards positive charges on the ground. Nega-
tive charges move through the lightning stream
from the air to the earth until an equilibrium
state is reached.

Experimental observations have shown that
lightning branches maintain an angle of about
16 degrees with their parent branch, and that
the lightning has a fractal dimension of approx-
imately 1.7 [2]

3.2 Dielectric Breakdown Model (DBM)

DBM [2] uses a regular grid representation and
calculates an electric potential, φ, for each grid
cell. Figure 2 shows a grid representation for
the lightning simulation. Negative charges are
placed at the top and their electric potentials are
set to φ = 0. Positive charges are placed at the
bottom and are set to φ = 1. The boundaries
of the grid are also set to φ = 0. These three
type of electric potentials are fixed and treated

Figure 3: Generating a lightning shape using
DBM.

as boundary conditions. For the remaining grid
cells, the electric potentials are calculated by
solving the Laplace equation:

∇2φ = 0. (1)

After computing φ over the grid, the lightning is
grown by randomly selecting a “candidate” cell
neighboring the existing lightning. The proba-
bility of selection is weighted according to the
electric potential. In Figure 2, blue cells are the
candidate cells for the current lightning. The
probability of selection for each candidate cell
i is computed using the following normalization
equation:

Pi =
(φi)

η∑n
j=1(φj)

η
, (2)

where j is an index of each candidate cell and n
is the total number of the candidate cells.

The electric potential for the chosen cell is
then set to φ = 0. The chosen cell becomes
part of the lightning and is added into the bound-
ary condition. This process is repeated until the
lightning reaches the cells that have the positive
charge on the ground. Figure 3 shows the over-
all process of generating lightning using DBM.
η can control the number of branches. As η
increases, the lightning shape has fewer sub-
branches. Therefore, DBM is often called the
η model. A value of two or three is used for a
realistic lightning.

Kim and Lin [1, 8] proposed practical tech-
niques for using DBM to generate lightning.
These techniques are based on DBM and solve
the Laplace equation by using the conjugate gra-
dient method with an incomplete Cholesky pre-
conditioner. While this technique can generate
realistic shapes, it can be computationally ex-
pensive, because the conjugate gradient method



Figure 4: This shows values of the potential field
after solving the Laplace equation using the con-
jugate gradient method on a 7 x 7 grid.

has a time complexity of O(G1.5) [13], where G
is the number of the grid cells. We found that
it takes about 1.5 seconds to create a lightning
shape using a 128 x 128 grid.

4 Our Method

In this section, we explain various components
of our method for interactive lightning genera-
tion.

4.1 Rational Approximation of Electric
Potentials

We propose a method that quickly approximates
the dominant properties of electric potentials,
and allows them to be computed at interactive
rates. We do not solve the Laplace equation us-
ing the conjugate gradient method. We found
that there are two simple properties of a poten-
tial field that can be described according to its
cell type:

• The potential increases towards the positive
cells.

• The potential decreases towards the nega-
tive cells on the lightning path and bound-
ary cells.

Figure 4 shows an example of the electric po-
tential on a 7 x 7 grid. The potential depends
on the distance to each type of cells, similar to
other physical equations for electrostatics such
as Coulomb’s law. We are not the first one to
observe such phenomenon. In physics, it is well-
known that a potential at a point x that satisfies
the Laplace equation is equal to the average po-
tential computed on a virtual sphere located at

the point x, each of which is governed by the
electric potential equation [14]:

V =
1

4πε0

(q
r

)
, (3)

where q and r are an electric point charge and
the distance from the charge to the point x, re-
spectively. This idea is also adopted in prior
works [6, 3].

We have found that these prior techniques
can generate less interesting branching patterns
in the lightning shape depending on configura-
tions. According to our tests, we conjecture
that this phenomenon can occur because the po-
tential can have very similar values between
the candidate cells and other charges along the
boundary condition. As a result, those candi-
date cells are likely to have similar probabilities
of being chosen. Therefore, the computed final
lightning shape tends to spread out to all direc-
tions from the starting position.

Instead, we propose to approximate the 1/r
relation of the electric potential that is controlled
by ρ, as follows:

Vapprox =
n∑
i=1

(
1

ri

)ρ
, (4)

where ρ > 1 and i indicates an index of
other charged cells; details of considering other
charged cells are explained later. Once we have
computed the electric potential between the can-
didate cells and other charged cells, we use the
normalization equation, Eqn. 2.

Before we compute the potentials, we divide
the charges into three types: positive charges,
negative charges along the lightning path, and
boundary charges. We then calculate the electric
potentials based on those types separately as P,
N, and B,

Most prior approaches sum these three terms
(P, N, B), to compute the final potential. How-
ever, we found that a simple sum does not cre-
ate interesting branching patterns. For exam-
ple, consider the ‘tip effect’, which indicates that
a region surrounded by negative charges has a
high probability of having negative charge [2].
The summation of the terms fails to produce this
effect. The issue arises mainly because we com-
pute potentials by assuming each charged point
is in the center of a cell. As a result, the 1/r



(a) CGM (b) Our method

Figure 5: Comparison of lightning shapes. Red
and blue rectangles represent the start and goal
position of the lightning. Our method shows
a similar result to DBM, but is about 20 times
faster.

term cannot create extremely small values be-
tween even neighboring cells.

To address this issue, and to better express the
properties of a potential field, we propose to use
the following rational function:

φ =
P

N ×B
. (5)

Since we divide positive potentials with those of
negative ones, we can generate stronger nega-
tive potentials among nearby negative charges.
In other words, this rational function is adopted
to re-produce the two key properties of the po-
tential field.

Figure 5 compares lightning that was gener-
ated by the conjugate gradient method [1] to our
method on a 128 x 128 grid. Figure 6 shows a
potential starting from the top and increasing to-
wards the bottom of a 128 x 128 grid. The sum-
mation model that sums P, N, and B does not
match well to the result of DBM, while our ra-
tional model shows a similar value distribution
to the reference.

Arguably, our parameter ρ has a similar effect
as the existing parameter η used in the normal-
ization equation. However, we have found that
it has a subtle yet meaningful effect compared
to that of η. To show the different behaviors of
η and ρ, Figure 7 shows lightning with different
values. As the value of ρ increases, the lightning
has fewer branches and shows stronger direc-
tionality to the target position. The η parameter
of DBM also controls the number of branches
and shows a similar effect to ρ. Unlike ρ, in-
creasing η trims small branches, while maintain-

Figure 6: Distribution of the potential on the
1282 grid scene shown in Fig. 5. The x and y
axes represent distance from the initial negative
charge and the computed electric potential, re-
spectively. The summation model does not show
a proper value distribution, while our rational
model shows a similar pattern to the one com-
puted by DBM.

ing the main stream. As a result, applying a
proper ρ value before computing the probabil-
ity with η can make more appealing branching
patterns than those results only from the η term.

We also provide different types of the light-
ning that are not the cloud-to-ground lightning.
Figure 8 shows the lightning for multiple tar-
gets. Figure 9 shows a chain lightning, where
the lightning goes through the targets in a row.

4.2 Avoiding Local Minima

There can be objects or obstacles that should not
be hit by the lightning, such as wall in a game
scene. For such obstacles, we assign negative
charges and treat them as a part of the boundary
condition.

When we have a complex scene, our method
encounters local minima, similar to other po-
tential field methods [15]. Since our algorithm
computes potentials based on the distance, when
a scene has obstacles that block the target po-
sition from the starting position, the lightning
branches can spread out excessively (Figure 10).

To handle this problem, we utilize waypoints
that are generated by path planning methods
such as the A∗ algorithm. Many games already
use fast path planning algorithms to compute
such waypoints for various purposes (e.g., com-
puting navigable paths [16]). Waypoints consist



(a) η = 1

(b) η = 2

(c) ρ = 1

(d) ρ = 2

Figure 7: Lightning shapes as a function of η and ρ. By increasing ρ values, we can trim down
branches with a stronger directionality to the target position. On the other hand, as we use bigger
η values, we trim down small branches, while maintaining the main branches; see the pdf file for
zoomed-in views.

Figure 8: An example of a space scene with a
lightning weapon for multiple targets generated
by our method.

of a sequence of points that define a path. To
guide a lightning shape in a complex scene, we
access the first waypoint cell, W , in the way-
point list and use it as a positive charged cell in-
stead of considering the target positive charges.
Once the lightning pattern reaches the cell W ,
we iterate the process by accessing the next way-
point, and continue until we reach the final way-
point in the list, which is set to the target positive
cell. Figure 10 shows the lightning path guided
by waypoints.

Figure 9: An example of the chain lightning.
A sorcerer casts a magic of chain lightning that
goes through the enemies.

4.3 Rendering

We utilize physical characteristics such as the
thickness and brightness of the lightning stream
to render the lightning [4, 1]. The lightning
stream is commonly decomposed into the main
and secondary channels. The main channel is a
path that connects the starting and target points,
while the secondary channels are sub-branches
of the main channel. The main channel receives
a bright and constant intensity, while the sec-
ondary channel receives a reduced intensity in
proportion to the distance from the main chan-
nel. Also, the secondary channel has half of



(a) Result w/o waypoints (b) Result w/ waypoints

Figure 10: Lightning shapes computed with and
without waypoints. The brown objects repre-
sent obstacles. (a) shows the local minima prob-
lem. Cells in the red circle are closer to the goal
than cells in the blue circle. The lightning tries
to grow in the red circle, even though it cannot
reach the goal directly. (b) shows the result with
waypoints, represented by green circles.

thickness of the main channel.
Our rendering algorithm uses deferred render-

ing and is implemented as in the OpenGL Shad-
ing Language (GLSL). We render a scene and
its lightning to separate framebuffer textures.
For rendering the lightning shape, we apply the
thickness and brightness to each branch while
considering the depth buffer. Lines of the light-
ning are rendered by using billboard techniques
as rectangles. We use cylinders and spheres to
represent branches of the lightning for three di-
mensional scenes (Figure 12).

To represent the glow effect of the light-
ning, we use a fast two-pass Gaussian blur filter,
which is a widely used technique in games [17].
First, we apply the Gaussian blur horizontally to
the framebuffer texture of lightning and, then,
use the filter vertically on the previous result. At
the last stage, we combine two textures to get
the final image. We also utilize jittering [8] to
reduce an artifact of grid regularities that appear
due to the lack of a fine grid resolution.

5 Implementation and Results

We implemented our algorithm in C++ using
data structures in STL. Figure 1 shows a night
scene with the lightning that is generated by our
method. All the experiments are run by using a
single core on a 2.6 GHz Core i7 PC. Details on
implementation and acceleration techniques are

Table 1: 2D timing comparisons: The table
shows the average time (ms) to generate light-
ning. The number in parenthesis is the average
number of lightning branches.

Grid size
(2D)

DBM
(Kim and Lin)

Our method

32 x 32 26 (52) 2 (56)
64 x 64 199 (136) 13 (175)

128 x 128 1429 (395) 60 (371)
256 x 256 18555 (1262) 713 (1347)

Table 2: 3D timing comparisons: The table
shows an average time (ms) to generate light-
ning. The number enclosed in parenthesis is the
average number of lightning branches.

Grid size
(3D)

DBM
(η=3)

Our method
(η=2, ρ=3)

32 x 32 x 32 3720 (76) 27 (75)
64 x 64 x 64 104918 (280) 204 (313)

available at the supp. report.

5.1 Comparisons

We ran experiments to compare the performance
of our method with DBM [1] and its approxi-
mate method, the fast Laplacian growth (FLG)
method [3].

First, we compared the computation time of
our method against DBM on a simple scene that
has a negative charge at the top and a positive
charge at the bottom. We used η = 2 and ρ = 3
in most cases, except for the 128 x 128 and
256 x 256 cases. We used η = 3 and ρ = 3
for those cases to produce similar branching to
the result of DBM [1]. We performed ten trials
of both algorithms and reported average values.
Tables 1 and 2 show the average time to generate
the lightning shape and the number of branches
with different grid sizes for both two-and three-
dimensional scenes. Our method is about 20
times faster for 2D scenes and 320 times faster
for 3D scenes.

Overall, DBM is not suitable for interactive
applications, while our algorithm can provide
interactive frame rates at 642 for 2D and 323

for 3D scenes. Furthermore, when we can al-
low multiple frames, e.g., two or three frames, to
asynchronously generate a lightning shape, our



Table 3: Time (ms) comparison per branches on
a 512 x 512 grid with the same η = 2 value used.

branches DBM
Fast Laplacian

growth
Our

method
100 87157 10 8
200 91705 22 12
300 96864 38 19
400 102639 55 26
500 109009 72 35

1000 149833 181 94
2000 255792 496 288
3000 343199 921 565
4000 409383 1432 902
5000 458477 2022 1319

method becomes practical with 1282 and 643

grids.
We also compared the computation times of

different methods as a function of the number of
branches for DBM, FLG [3], and our method.
We used a 512 x 512 grid and same η = 2. Ta-
ble 3 shows a computation time for each number
of branches. In this case, our method also shows
significantly faster performance than DBM. In
addition, our method is slightly faster, about two
times, than the fast Laplacian growth. While our
performance over FLG is minor, we found that
our method can generate a wide variety of light-
ning shapes (Fig. 8) thanks to our rational func-
tion and two different parameters (Fig. 7). In ad-
dition, we have shown that our method can han-
dle more complex scenes by utilizing waypoints
(Fig. 10).

We have additionally tested how our method
and FLG behave in different scene configura-
tions, especially, scenes with the ground positive
changes or with a specific target. We found that
while FLG supports the ground charges easily, it
requires a high weight for the positive charge for
a specific single target scene to attract the light-
ning to the particular destination. This is mainly
because the electric potential for the positive
charge is too small than other negative charges
without using such a high weight. On the other
hand, our method can generate the lightning
shape that proceeds to the target for both ground
and specific single target scenes without adjust-
ing any weights for positive charges. This prop-
erty is achieved by our rational approximation

(a) FLG for ground (b) FLG for a specific
goal w/ weight (128)

(c) Ours for ground (d) Ours for a specific
goal

Figure 11: Behavior difference with fast Lapla-
cian growth (FLG). Red and blue rectangles rep-
resent the start and goal position respectively.
FLG requires a high weight to attract the light-
ning to a specific goal, while our method can
generate the lightning shape for that case, with-
out adjusting any weights.

that effectively attracts the lightning to the target
positive charges. Figure 11 shows the lightning
shapes for ground and single target scenes.

6 Conclusion

We have presented a physically-inspired, inter-
active algorithm for generating realistic light-
ning. Our algorithm shows visually similar re-
sults to previous physically based methods at in-
teractive speeds. Our algorithm can be used in
games that require realistic lightning or magic
effects.

While our algorithm can generate the light-
ning quickly, higher resolution of the grids con-
sistently results in more realistic lightning. An
obvious direction of accelerating our method to
support these resolutions is to implement our al-
gorithm on the GPU. Lightning emits light and
generates a sound at the time of discharge. For
representing a realistic lightning, the lightning
should be considered as a light source in the



Figure 12: The lightning in a 3D scene with a 64
x 64 x 64 grid. The lightning stream is rendered
by cylinders and spheres that are generated by
geometry shader.

scene. Furthermore, sounds generated by con-
sidering the distance between the user and the
lightning could have a substantial impact on user
immersion in games.
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