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Abstract: A new object tracking mask-based novel-look-up-table (OTM-
NLUT) method is proposed and implemented on graphics processing units 
(GPUs) for real-time generation of holographic videos of three-dimensional 
(3-D) scenes. Since the proposed method is designed to be matched with 
software and memory structures of the GPU, the number of compute-
unified-device-architecture (CUDA) kernel function calls and the computer-
generated hologram (CGH) buffer size of the proposed method have been 
significantly reduced. It therefore results in a great increase for the 
computational speed of the proposed method and enables real-time 
generation of CGH patterns of 3-D scenes. Experimental results show that 
the proposed method can generate 31.1 frames of Fresnel CGH patterns 
with 1,920×1,080 pixels per second, on average, for three test 3-D video 
scenarios with 12,666 object points on three GPU boards of NVIDIA GTX 
TITAN, and confirm the feasibility of the proposed method in the practical 
application of electro-holographic 3-D displays. 
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1. Introduction 
Thus far, computer-generated hologram (CGH) has attracted much attention in the field of 
electro-holographic three-dimensional (3-D) display, since it can correctly record and 
reconstruct the light waves of 3-D scenes [1, 2]. The CGH-based electro-holographic display 
system, however, has a challenging issue of an enormous computational time involved in the 
generation of CGH patterns for 3-D video images.  

A number of CGH algorithms for accelerating the computational speed has been 
proposed. Some of them include ray-tracing [1-3], look-up-table (LUT) [4], image hologram 
[5], recurrence relation [6, 7], wave-front recording plane (WRP) [8], double-step Fresnel 
diffraction (DSF) [9], and polygon methods [10]. In addition, various holographic video 
compression methods have also been proposed for electro-holographic television systems [11-
14]. Moreover, several attempts to implement those CGH algorithms on field-programmable-
gate-arrays (FPGAs) or graphics processing units (GPUs) toward their real-time applications 
have been made [7, 8, 15, 16].  

Recently, a novel-look-up-table (NLUT) method was also proposed as an alternative 
approach for fast generation of CGH patterns [17]. Here, it must be noted that the NLUT, 



contrary to other methods, generates the CGH patterns of 3-D scenes based on a two-step 
processing: pre- and main-processing [18-20]. In the pre-processing step, the number of object 
points to be calculated has been minimized by removing as much redundant object data 
between the consecutive 3-D video frames as possible by using motion estimation and 
compensation-based data compression algorithms. In the following main-processing step, the 
CGH patterns only for those compressed object data obtained from the pre-processing are 
computed by using the NLUT based on simple shifting and addition operations of the 
principal fringe patterns (PFPs), which were pre-calculated and stored [17]. This is the unique 
CGH calculation process carried out in the NLUT method by taking advantage of its shift-
invariance property [19, 20]. 

Several types of NLUTs employing the pre-processing steps for eliminating the 
temporal redundancy between the consecutive 3-D video frames have been proposed until 
now. Some of them include temporal redundancy-based NLUT (TR-NLUT) [18], motion 
compensation-based NLUT (MC-NLUT) [19], and MPEG-based NLUT (MPEG-NLUT) [20] 
methods.  

In practice, these NLUTs would be eventually implemented on FPGAs or GPUs for 
their practical application to real-time CGH generation of 3-D scenes [21, 22]. For efficient 
implementation of NLUTs on GPU boards, they must be compatible with the software and 
memory structures of the GPU boards. This implies that the NLUT algorithms must be well 
tailored to be compatible with the specifications of the GPU boards. 

Recently, MPEG-based video communication and television systems have employed a 
concept of object tracking mask (OTM) for obtaining a high video coding-efficiency [23-25]. 
Here, the primary objective of OTM is to support the coding of video sequences, which are 
pre-segmented based on video contents, and to allow separate and flexible reconstruction and 
manipulation of contents at the decoder in MPEG [24, 25]. In video calls, CCTVs, NEWS, 
and most broadcasting, cameras to capture videos are fixed and contain only a small number 
of objects and people with motion in a large stationary background. Under these 
circumstances, a high coding-efficiency can be achieved by employing the OTM-based video 
compression method [23].  

This OTM method can be directly applied to the NLUT-based holographic 3-D video 
communication system, since the NLUT has a unique property of shift-invariance unlike other 
CGH generation algorithms. At the same time, the OTM method has the simplest algorithmic 
and memory structure to be practically implemented on the commercial GPU boards among 
those NLUT methods mentioned above. Even though the conventional TR-NLUT, MC-NLUT 
and MPEG-NLUT methods show good performances in the compression of 3-D video data, 
these methods have several drawbacks, when they are evaluated to be implemented on GPU 
boards.  

In the TR-NLUT method, only the difference images between two consecutive 3-D 
video frames are involved in CGH calculation. However, for CGH calculation of the current 
frame, two-step calculation processes are required, increasing its algorithmic complexity. That 
is, in the CGH calculation process of the current frame, the CGH pattern of the previous frame 
must be saved on the temporary buffer. If the size of the temporary buffer becomes larger than 
that of the on-chip memory, the global memory of the GPU is used to store this buffer instead. 
As a result, the number of accesses to the global memory increases, causing a deterioration of 
the computational performance of the GPU.  

In the MC-NLUT and MPEG-NLUT methods, object-based and block-based motion 
estimation and compensation processes are additionally performed, respectively, before the 
difference images between two consecutive video frames are extracted using the TR-NLUT. 
The algorithmic complexities of the MC-NLUT and MPEG-NLUT methods therefore 
increase much more than that of the TR-NLUT.  

In this paper, a new object tracking mask-based NLUT (OTM-NLUT) method, which 
has simple algorithmic and memory structures, is proposed and implemented on GPU boards 
for real-time CGH computation of 3-D video frames. In the proposed method, the current 
video frame is divided into fixed and moving object points by using a simple OTM method. 



The CGH pattern for the fixed object points of the previous frame is then reused to generate 
the CGH pattern for those of the current video frame, while the CGH pattern for the moving 
object points are calculated using the NLUT. Therefore, the total number of calculated object 
points of the current video frame can be significantly reduced by the reuse of the CGH pattern 
of the fixed object points in the previous frame. Furthermore, contrary to the two-step 
calculation processes of the conventional NLUT methods, the proposed method has only a 
single calculation process for the moving object points.  

To confirm the feasibility of the proposed method, experiments with three kinds of test 
3-D video scenarios are carried out on three GPU boards, and the results are compared to 
those of the conventional NLUT, TR-NLUT, MC-NLUT, and MPEG-NLUT methods in 
terms of the numbers of calculated object points and CUDA kernel function calls, the CGH 
buffer size, the total calculation time, and the frames per second (FPS). 

2. CGH generation of a 3-D object using the NLUT 

In the NLUT method, a three dimensional object is approximated as a set of discretely sliced 
object planes that have different depth. Only the fringe patterns for the center-located object 
points on each object plane, called principal fringe patterns (PFPs), are pre-calculated, and 
stored.  This method, in turn, achieves a significant increase of the computational speed as 
well as a massive reduction of the memory capacity [17]. Figure 1 shows geometry for 
generation of the Fresnel CGH pattern of a 3-D object.  

The location coordinate of the pth object point is specified by (xp, yp, zp), and each 
object point is assumed to have an associated real-valued magnitude and phase, ap and φp. 
Additionally, we assume that the CGH pattern is positioned on the plane of z = 0. 

 

 
Fig. 1 Geometry for generating the Fresnel CGH hologram pattern of a 3-D object 

As mentioned above, a 3-D object can be treated as a set of 2-D object planes discretely 
sliced along the depth direction of z, and each object plane is approximated as a collection of 
self-luminous object points of light. Thus, the unity-magnitude PFP for the object point (0, 0, 
zp) positioned at the center of an object plane with a depth of zp, T(x, y; zp) can be defined by 
the following equation [2]: 
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Here, the wave number k is defined as k = 2π/λ, where λ and θR represent the free-space 
wavelength of the light and the incident angle of the reference beam, respectively. The 
oblique distance rp between the pth object point of (xp, yp, zp) and the point on the hologram 
plane of (x, y, 0) is given by:  
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The fringe patterns of other object points on the same object plane can be, then, simply 
obtained by shifting this pre-calculated PFP [17]. Therefore, fringe patterns for all object 
points located on the same object plane can be generated by adding these shifted PFP versions. 
The final CGH pattern of a 3-D object can be obtained by summing all shifted PFP versions 
together, which are generated on each object plane.  

Therefore, the CGH pattern for a 3-D object I(x, y) in the NLUT method can be 
expressed in terms of shifted versions of pre-calculated PFPs of Eq. (1) as shown in Eq. (3).  
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where N is the number of object points. Eq. (3) shows that the CGH pattern of a 3-D object 
can be obtained simply by shifting the PFPs as a function of the displaced values of the object 
points from the center object points on each object plane and by then getting their sum. 

3. Proposed OTM-NLUT method  

In this section we explain main components of our method and its compatibility with GPUs. 
 

3.1. Object tracking mask for data compression of 3-D video frames 

The MPEG-4 standard suggests the use of an object tracking mask (OTM) in video 
compression [24], and now video object segmentation and tracking becomes an important 
issue for successful usage of MPEG-4, MPEG-7, and MPEG-21 algorithms. Segmentation by 
object-tracking allows much useful functionality for multimedia applications such as easy 
access to bit streams of individual objects, object-based manipulation of bit streams, various 
interactions with objects, and the reuse of content information by scene composition [25]. 

 

Fig. 2 Overall block-diagram of the proposed method for CGH generation of 3-D video images 

Here in this paper, this OTM-based video compression technique is employed for 
reduction of the number of object points to be calculated in CGH generation with the NLUT 
method. Figure 2 shows an overall block-diagram of the proposed OTM-NLUT method to 
generate the CGH patterns for 3-D video images. The proposed method is composed of three 
steps. First, intensity and depth data of the current frame of 3-D video images are extracted 
and divided into fixed and moving object points using the OTM. Second, the CGH patterns 
for the moving object points are calculated with the NLUT. Third, the CGH pattern of the 
current frame is generated by adding the CGH pattern generated for the fixed object points of 
the previous frame to that for the moving object points of the current frame, as both the 
current and previous frames share the same fixed object points. The CGH pattern of the 
current frame is then transmitted to the CGH video output. 



 
Fig. 3 Flowchart for generation of the OTM  

Figure 3 shows the flowchart for generation of the OTMs over N frames. It consists of 
four steps, in which ‘| |’ denotes the absolute value. First, absolute values of the differences 
between the video frames are accumulated in order to find the moving object points. Second, 
when the accumulated value of the object point is ‘0’, which means this object point has no 
difference, it becomes the fixed point. Thus, the mask values of the fixed and moving object 
points are set to be ‘1’ and ‘0’, respectively. Otherwise, the mask values of the moving and 
fixed object points are set to be ‘1’ and ‘0’, respectively. Finally, two masks for each of the 
moving and fixed object points, which are called MASKmoving and MASKfixed, are obtained. 
Here, by using these MASKmoving and MASKfixed, corresponding moving and fixed object points 
of the current video frame can be extracted.  

In most MPEG-based video communication and television systems, the number of frames 
considered for computing a one set of OTMs is usually set to be from 12 to 15, when the 
frames per second (FPS) are given by 25 to 30 [26].  

3.2. Compatibility of the NLUT with the GPU board 

Generally, the GPU board can calculate the CGH patterns of 3-D scenes in parallel with a 
high computational speed by using the compute-unified-device-architecture (CUDA), where a 
CUDA kernel function is executed by the massive number of threads of the GPU board. That 
is, video data to be processed by these threads are transferred from the host memory, i.e., main 
memory, to the device global memory, and the threads then access their portion of data from 
the global memory. Here, the global memory, which is typically implemented with dynamic 
random access memories (DRAMs), tends to have long access latencies (e.g., hundreds of 
clock cycles) and finite access bandwidth. Moreover, even though many threads are available 
for parallel execution in the GPU board, traffic congestion in the global memory may degrade 
the calculation performance of the GPU significantly. Thus, degrees of algorithmic 
complexity and global memory utilization is one of the most important factors in 
implementation of an efficient parallel program [29].  

Here, the conventional TR-NLUT, MC-NLUT, MPEG-NLUT, and proposed OTM-
NLUT methods are comparatively analyzed in terms of degrees of algorithmic complexity and 
global memory utilization. Figure 4(a) shows the software structure of the TR-NLUT, MC-
NLUT, and MPEG-NLUT methods. Those methods mainly consist of three steps. First, the 
preprocessing mechanisms of the TR-NLUT, MC-NLUT, and MPEG-NLUT methods, which 
can reduce the number of calculated object points for CGH generation [18-20], are performed 
in the ‘A’ part of Fig. 4(a). After extracting intensity and depth data of the 3-D object of the 
current frame, the difference image between two object images of the previous and the current 
frames is calculated in the TR-NLUT. On the other hand, in the MC-NLUT, motion vectors of 
the 3-D object between the previous and current frames are extracted, and the motion-
compensated object image is obtained with these motion vectors. Then, the difference image 



between the motion-compensated object image of the previous frame and the object image of 
the current frame is calculated.  

Moreover, in the MPEG-NLUT, motion vectors of the segmented image blocks between 
the previous and current frames are extracted, and the motion-compensated image blocks are 
obtained with these motion vectors. The difference image blocks between the motion-
compensated image blocks of the previous frame and the image blocks of the current frame 
are then calculated.  

Second, the CGH patterns for the changed parts in both previous and current frames are 
calculated by using the NLUT in each of the TR-NLUT, MC-NLUT, and MPEG-NLUT 
methods. The CGH pattern of the current frame is then generated by subtracting the CGH 
patterns for the disappeared object points from the CGH pattern of the previous frames and by 
adding the CGH pattern for the newly appeared object points to the CGH pattern of the 
previous frame. The lastly calculated CGH pattern is transmitted to the CGH video output as 
well as stored in the previous frame buffer of the CGH [18-20]. 

Figure 4(b) shows the software structure of the proposed OTM-NLUT method. From 
Fig. 4(b), the number of base CUDA kernel function calls and the total CGH buffer size of the 
proposed method can be obtained. Three-step processing for CGH generation in the proposed 
method has already been explained in Chapter 3.1 with Fig. 2. 

In this paper, the NLUT method is implemented as the base CUDA kernel function. 
Since the CGH can be generated with PFPs on each depth in the NLUT method [17,22], the 
base CUDA kernel function may be called on each depth. Actually, the computational 
performance of the GPU depends on the number of base CUDA kernel function calls, and the 
conventional NLUT methods have different numbers of base CUDA kernel function calls. In 
addition, as seen in the ‘B’ part of Fig. 4(a), the CGH pattern of the current frame is generated 
by compensating the CGH pattern of the previous frame, and thus the CGH pattern of the 
previous frame must be saved in the temporary buffer. Since this temporary buffer is saved in 
the global memory of the GPU board. As the total CGH buffer size increases, the 
corresponding degree of global memory utilization of the GPU board also grows. It results in 
a decrease of the GPU’s computational performance. 

 



 

Fig. 4 These flow charts show software structures of (a) TR-NLUT, MC-NLUT, and MPEG-
NLUT, and (b) OTM-NLUT methods 

Table 1 shows the comparison results on compatibilities of the conventional and 
proposed NLUT methods with the GPU board. As shown in ‘A.1’ and ‘A.2’ parts of Fig. 4(a), 
the number of base CUDA kernel function calls for each frame of the conventional TR-NLUT 
method is given by NDP-AOP +NDP-DOP, in which NDP-AOP  and NDP-DOP represent the numbers of 
depth planes with appeared object points and disappeared object points, respectively.  

In the MC-NLUT and MPEG-NLUT methods [19, 20], object-based and block-based 
motion compensation processes, respectively are carried out for CGH generation, in which 
each frame consists of several objects and blocks. Therefore, the final CGH pattern of each 
frame of those methods can be generated by summing hologram patterns of each object and 
block. Because these hologram patterns of each object and block are calculated by using PFPs, 
the numbers of base CUDA kernel function calls for each frame is given by summation of 
those NDP-AOP and NDP-DOP for all moving objects in the MC-NLUT method and for all moving 
blocks in the MPEG-NLUT method, respectively as shown in Table 1. Thus, as the numbers 
of objects and blocks increase, the corresponding numbers of CUDA kernel function increase 
as well.   

Table 1 Compatibilities of the conventional and proposed NLUT methods with the GPU board 

 TR-NLUT MC-NLUT MPEG-NLUT 
Proposed 
method 
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On the other hand, as seen in ‘A.1’ of Fig. 4(b), the proposed method has only a one-

step calculation process contrary to the conventional methods, which have two-step 
calculation processes. That is, in the proposed method, the number of base CUDA kernel 
function calls of each frame is given by NDP-MOP, in which NDP-MOP represents the number of 
depth planes with moving object points, which is similar to NDP-AOP. Because the proposed 
method has no compensation process, only the appeared object points representing the moving 
object points are calculated to generate the CGH pattern for each frame. Thus, the total 
number of base CUDA kernel function calls can be highly reduced, when it is compared to 
those of the conventional TR-NLUT, MC-NLUT, and MPEG-NLUT methods. The reduced 
number of base CUDA kernel function calls in turn can result in a great reduction of the CGH 
computation time of the proposed method on the GPU boards.  

Table 1 also shows the total CGH buffer sizes of the conventional TR-NLUT, MC-
NLUT, MPEG-NLUT, and proposed methods. As seen in the ‘B’ part of Fig. 4(a), in all 
conventional methods, the CGH patterns of the current frame are generated by compensating 
the CGH patterns of the previous frames, and thus the CGH patterns of the previous frames 
must be stored in the temporary buffers. In the TR-NLUT method, just the CGH pattern of the 
previous frame is saved in the temporary buffer, so that the total CGH buffer size of the TR-
NLUT is given by the ‘CGH size’ itself. On the other hand, in the MC-NLUT and MPEG-
NLUT methods, CGH patterns for each object and block of the current frame are generated by 
compensating the CGH patterns for each object and block of the previous frame [19, 20], 
therefore the CGH patterns for all objects and blocks of the previous frame have to be 
maintained in the temporary buffer. Consequently, the total CGH buffer sizes of the MC-
NLUT and MPEG-NLUT methods increase up to ‘CGH size × (Nobject+1)’ and ‘CGH size × 
Nblock’, respectively. Here, the CGHs for the fixed objects are saved together in one buffer, 
thus one more CGH buffer for those fixed objects is additionally needed [19]. Since these 
temporary buffers are saved in the global memory of the GPU board, degrees of global 
memory utilization of the GPU board is increased much more than that of the TR-NLUT, 
which can cause the computational performance of the GPU to be deteriorated.  

However, in the proposed method, as seen in the ‘B’ part of Fig. 4(b), the CGH pattern 
of the current frame is generated simply by adding the CGH pattern for the fixed object points 
of the previous frame to that for the moving object points of the current frame. Therefore, 
only the CGH pattern for the fixed object points of the previous frame is saved in the 
temporary buffer. That is, the total size of the CGH buffer of the proposed method equals to 
that of the ‘CGH size’ itself. The proposed method, therefore, turns out to have the least CGH 
buffer size. It means that the computational performance of the proposed method can be 
enhanced. 

3.3. Numbers of calculated object points for CGH generation 
In the conventional TR-NLUT, MC-NLUT, and MPEG-NLUT methods, the numbers of 
calculated object points can be greatly reduced, since all those methods employ pre-
processing steps for removal of redundant object data between the consecutive video frames 
[18-20]. Equation (4) shows the total numbers of calculated object points in the conventional 
TR-NLUT, MC-NLUT, and MPEG-NLUT methods.  

NTCOP  = NDOP + NAOP - 2×NROP.                                                                       (4) 

Here, NTCOP indicates the total number of calculated object points required for CGH 
generation for each frame. NDOP and NAOP denote the number of disappeared object points in 
the previous frame and the number of appeared object points in the current frame, respectively. 



Also, NROP represents the number of redundant object points between the disappeared and 
appeared object points. In the TR-NLUT method, the value of NROP becomes small, since only 
the differences between the consecutive video frames are extracted. However, in the MC-
NLUT and MPEG-NLUT methods, it can be increased by employed motion estimation and 
compensation processes, which results in a reduction of the total number of calculated object 
points. On the other hand, in the proposed OTM-NLUT method, the CGH patterns of only the 
moving object points are calculated for each frame. Thus, the total number of calculated 
object points of the proposed method can be given by Eq. (5). 

NTCOP = NMOP,                                                                                          (5) 

where NMOP denotes the number of moving object points obtained with the MASKmoving.  

3.4. OTM-NLUT method on GPUs 
Figure 5 shows a conceptual diagram for implementing the proposed OTM-NLUT method on 
three GPU boards. Here, the CGH pattern with a resolution of 1920 × 1080 pixels is 
calculated by three GPU boards (Model: NVIDIA GTX TITAN) [27]. As shown in Fig. 5, the 
same input video image data is simultaneously fed to the three GPU boards, while the CGH 
pattern to be calculated is divided into two parts, where the resolution of each divided CGH 
pattern is given by 1920 × 540 pixels. Each GPU board then calculates its own CGH pattern 
in parallel.  

 

 
Fig. 5 Conceptual diagram for calculation of the CGH patterns in parallel on three GPU boards 

 

Figure 6 shows a block-diagram of the software structure of the proposed OTM-NLUT 
method implemented on three GPU boards. The CPU code is written in C-language and 
OpenMP, which only controls the system flow. Main CGH computation is carried out on three 
NVIDIA GTX TITAN GPU boards. The CPU core-1 controls the main system flow, which 
loads the PFPs for all depths, calculates the OTMs, loads the input object data, saves the CGH 
pattern as the file, and controls the GPU board-1. Each of the CPU core-2 and -3 controls only 
its corresponding GPU board-2 and -3, respectively. Since the CPU core-1, -2 and -3 work in 
parallel with the OpenMP code, these can work in parallel. Thus, GPU board-1, -2 and -3 
simultaneously calculate their allocated parts of the CGH pattern as shown as Fig. 5. 

In the GPU board-1, -2 and -3, in order to maintain low-memory usage of megabytes, 
one-dimensional (1-D) NLUT is used for generating the CGH patterns [28]. For fast loading 
and accessing the sub-PFPs data of the 1-D NLUT and the 3-D data of the input object on the 
GPU boards, three types of optimization techniques are also employed. These include the 
packing technique of the input 3-D object data for efficient storing in the on-chip shared 
memory, and the managing techniques of the on-chip shared memory for fast computation of 
the CGH, and the on-chip registers for quick storing of the calculated hologram data [22]. 



 

Fig. 6 Software structure of the proposed OTM-NLUT on three GPU boards 
 

4. Experiments and the results 

4.1. Test 3-D video scenarios 
To confirm the benefits of the proposed method and to comparatively analyze the 
computational performance of the proposed method with those of the conventional methods, 
experiments are performed. As test 3-D videos, three kinds of scenarios, which commonly 
occur in CCTVs, TV dramas, and video calls, are computationally generated. Here, each 3-D 
video scenario consists of 50 frames, each of which has a resolution of 320×240 pixels.  

Figure 7 shows intensity and depth images of the 1st, 30th and 60th frames for each of the 
scenarios. As seen in Fig. 7, ‘Scenario I’ shows the sequential front views of a 3-D video of 
‘A car passing by the house’, which looks like the scene captured by the CCTV camera.  This 
video is mostly composed of a small part of a moving car image and a large part of a fixed 
house. In addition, ‘Scenario II’ and ‘Scenario III’ also show the sequential front views of 3-D 
videos of ‘A man walking nearby the bed’ and ‘A man holding out his hand’, respectively. 
Here, these video images look similar with scenes captured from the TV drama and video call, 
which are also composed of small parts of a moving man, and large parts of fixed points just 
like the case of ‘Scenario I’.  

 



 
Fig. 7 Intensity and depth images of the 1st, 30th, and 60th frames for each of the ‘Scenario I, II 
and III’ 

4.2. Generation of CGH patterns with the proposed method   
In the experiments, CGH patterns with a resolution of 1,920×1,080 pixels are generated with 
intensity and depth data of the test 3-D video scenarios. Each pixel size of the CGH pattern is 
given by 10μm × 10μm. Moreover, the viewing distance is set to be 500mm, and the horizontal 
and vertical discretization steps are set to be 150μm, respectively, which means that the 
amount of the pixel shift is given by 15 pixels in the OTM-NLUT method [17]. In this 
configuration, to fully display the fringe patterns for the first and end image points located on 
each image plane, the PFP must be shifted by 2,250 (150×15) pixels horizontally and 
vertically. Thus, the total resolution of the PFP should become 2,750 (500+2,250) × 2,750 
(500+2,250) pixels [17]. The PFPs for the center image points located on each plane can be 
calculated. Here, the computer system used in the experiment is composed of an Intel i7 3770 
CPU with an 8GB RAM and three NVIDIA GTX TITAN GPU, and it works on the CentOS 
6.3 Linux platform. 

Figure 8 shows intensity and depth images of the 60th frame, two masks of MASKfixed 
and MASKmoving, and extracted fixed and moving objects with corresponding masks for each 
case of the ‘Scenario I, II and III’. With these image data, the CGH patterns are calculated 



using the proposed OTM-NLUT method. Here, the mask sizes are the same with those of 
input images, which are given by 320×240 pixels.  

 

 
Fig. 8 Intensity and depth images of the 60th frame, masks and extracted fixed and moving 
objects with corresponding masks for each case of the ‘Scenario I, II and III’ 

 
Figure 9 shows the calculated CGH patterns with the proposed method for fixed, 

moving and total object images of the 60th frame for each case of the ‘Scenario I, II and III’. 
Here, in the 60th frame, the CGH patterns for only the moving objects are calculated, since the 
CGH patterns for the fixed objects over several frames have been calculated at a time.  

For calculation of the CGH patterns for the moving object points, as seen in Fig. 6, the 
CPU core-1 controls the main system flow, which loads the 1-D NLUT, calculates the OTMs, 
loads input object data, obtains the moving object points using the MASKmoving, packs those 
moving object points for each depth, and controls the GPU board-1. CPU core-2 and -3 
control only the GPU board-2 and -3, respectively. Then, CPU core-1, -2 and -3 transfer the 1-
D NLUT and packed moving object points to each of the GPU board-1, -2 and -3. As seen in 
Fig. 5, the same moving object points and 1-D NLUT are simultaneously fed to all of the GPU 
board-1, -2 and -3, while the CGH pattern to be calculated is divided into three parts. Then, 
each GPU board calculated its own CGH pattern in parallel. The CGH pattern for the moving 
object points can be obtained just by shifting the PFPs depending on the displaced values of 
the object points from the center object points on each object plane and by adding them all up 
[17].  

For this calculation, the CUDA kernel functions are called for each depth. If the 
moving object points are located in many depth layers, the number of CUDA kernel function 
calls is increased. After the hologram patterns for the moving object points are calculated in 
each of the GPU board-1, -2 and -3, the total CGH pattern of the 60th frame can be finally 
calculated simply by adding these hologram patterns for the moving object points and that for 
the fixed object points already calculated.  



 
Fig. 9 Calculated CGH patterns of the 60th frames with the proposed method for the fixed, 
moving and total objects images for each case of the ‘Scenario I, II and III’  

Figure 10 shows the results of the reconstructed object images of the 1st, 30th and 60th 
frames from the CGH patterns calculated with the proposed method for three kinds of 3-D 
video scenarios. In the experiments, off-axis reference beams were used for reconstruction of 
object images without having direct and conjugate beams. As seen in Fig. 10, all object 
images have been successfully reconstructed and are visually correct. 

 

Fig. 10 Reconstructed 3-D video images of the 1st, 30th and 60th: (a)-(c) ‘Scenario I’, (d)-(f) 
‘Scenario II’, (g)-(i) ‘Scenario III’ 

4.3. Performance analysis of the proposed method 
Figure 11 shows the comparison results on the performances of the conventional and proposed 
methods in terms of the numbers of calculated object points, CUDA kernel function calls, and 
the calculation time for each case of the ‘Scenario I, II and III’. Table 2 also shows the 
average numbers of calculated object points, CUDA kernel function calls, and the average 
calculation time for one frame as well as the CGH buffer sizes and the numbers of video 



frames per second (FPS) of the conventional and proposed methods for each case of the 
‘Scenario I, II and III’.  
 

 
Fig. 11 Comparison results on the performances of the conventional and proposed methods for 
each case of the ‘Scenario I, II and III’  

Table 2 Average performance of the conventional and proposed methods for each case of the ‘Scenario I, II 
and III’ 

  
Number of 
calculated 

object points 

Calculation
time (msec)

Number of 
CUDA kernel
function calls

CGH buffer 
size (MB) 

Frames per 
second (FPS) 

S
ce

na
ri

o 
I NLUT 16,470 168 174 0 6.0 

TR-NLUT 3,968 55 120 2 18.0 
MC-NLUT 3,679 52 116 4 19.1 

MPEG-NLUT 3,605 1,081 1,965 593 0.8 
OTM-NLUT 2,888 34 58 2 29.8 

S
ce

n
ar

io
 I

I NLUT 12,705 127 102 0 7.9 
TR-NLUT 4,741 49 102 2 20.3 
MC-NLUT 4,624 48 104 4 20.8 

MPEG-NLUT 4,549 1,010 1,771 593 0.9 
OTM-NLUT 3,138 34 44 2 29.1 

S
ce

n
ar

io
 I

II
 NLUT 8,824 94 125 0 10.7 

TR-NLUT 2,739 52 236 2 19.2 
MC-NLUT 2,524 66 349 10 15.2 

MPEG-NLUT 2,474 1,684 2,807 593 0.6 
OTM-NLUT 1,856 29 114 2 34.3 

 

4.3.1. Analysis on the numbers of calculated object points 
Figure 11 and Table 2 shows that the average numbers of calculated object points of the 
conventional NLUT, TR-NLUT, MC-NLUT, MPEG-NLUT, and proposed OTM-NLUT 



methods. These numbers have been found to be 16,470, 3,968, 3,679, 3,605, 2,888 and 12,705, 
4,741, 4,624, 4,549, 3,138 and 8,824, 2,739, 2,524, 2,474, 1,856, respectively, for each case of 
the ‘Scenario I, II and III’. In other words, the average numbers of calculated object points of 
the proposed method have been reduced by 82.47%, 27.22%, 21.50%, 19.89% for ‘Scenario I’, 
and 75.30%, 33.81%, 32.14%, 31.02% for ‘Scenario II’ and 78.97%, 32.24%, 26.47%, 
24.98% for ‘Scenario III’, respectively, when they are compared to each of the conventional 
NLUT, TR-NLUT, MC-NLUT and MPEG-NLUT methods.  

As seen in Fig. 11 and Table 2, the proposed OTM-NLUT has the lowest numbers of 
calculated object points for all cases of ‘Scenario I, II and III’ among the tested methods. 
Interestingly, the conventional TR-NLUT, MC-NLUT, and MPEG-NLUT methods also show 
much reduced numbers of calculated object points than those of the original NLUT method 
for three cases. In fact, the great reductions in the numbers of calculated object points are 
resulted from their employed pre-processing steps for removing redundant object data 
between the consecutive video frames, which is contrary to the original NLUT method having 
no data reduction process [18-20].  

In particular, the reason why the proposed method has the least numbers of calculated 
object points is that only the moving object points in the current frame are involved in CGH 
calculation unlike the conventional TR-NLUT, MC-NLUT, and MPEG-NLUT methods, 
where not only the disappeared object points in the previous frame, but also the newly 
appeared object points in the current frame are involved in CGH calculation together. That is, 
the total numbers of calculated object points of those conventional methods become almost 
doubled when they are compared to that of the proposed method.  

As seen in Fig. 11, for the 1st frames, all object points get involved in CGH calculation 
in all methods, but from the 2nd frames, the numbers of calculated object points are sharply 
reduced with their data reduction processes between the two consecutive video frames. In fact, 
Table 2 shows the average numbers of calculated object points, so that the differences in the 
numbers of calculated object points on an arbitrary frame for each case of the conventional 
and proposed methods cannot be exactly seen. We also provide Table 3 for detailed analysis, 
which shows the reduced numbers of calculated object points on a frame for each case of the 
conventional and proposed methods, the total numbers of calculated object points of the 
current frame, the numbers of disappeared object points in the previous frame, the numbers of 
newly appeared object points in the current frame, and the numbers of redundant object points 
between the previous and current moving objects for the 30th frame.  

Table 3 Results on the total numbers of calculated object points of the 30th for each case of the conventional 
and proposed NLUT methods  

  
Total number 
of calculated 
object points

Number of 
redundant 

object points

Number of 
disappeared 
object points

Number of 
appeared  

object points 

S
ce

n
ar

io
 I

 NLUT 16,055 0 0 16,055 
TR-NLUT 2,806 97 1,498 1,502 
MC-NLUT 2,624 188 1,498 1,502 

MPEG-NLUT 2,474 263 1,498 1,502 
OTM-NLUT 1,502 0 0 1,502 

S
ce

n
ar

io
 I

I NLUT 12,733 0 0 12,733 
TR-NLUT 4,274 371 2,502 2,514 
MC-NLUT 4,146 435 2,502 2,514 

MPEG-NLUT 4,062 477 2,502 2,514 
OTM-NLUT 2,514 0 0 2,514 

S
ce

n
ar

io
 I

II
 NLUT 8,972 0 0 8,972 

TR-NLUT 2,604 235 1,544 1,530 
MC-NLUT 2,342 366 1,544 1,530 

MPEG-NLUT 2,294 390 1,544 1,530 
OTM-NLUT 1,530 0 0 1,530 

 



As seen in Table 3, the total numbers of calculated object points of the 30th frame have 
been calculated to be 16,055, 2,806, 2,624, 2,474, 1,502 for ‘Scenario I’ and 12,733, 4,274, 
4,146, 4,062, 2,514 for ‘Scenario II’ and 8,972, 2,604, 2,342, 2,294, 1,530 for ‘Scenario III’, 
respectively, for each case of the conventional NLUT, TR-NLUT, MC-NLUT, MPEG-NLUT 
and proposed methods. That is, the original NLUT method calculated all object points of the 
30th frames for CGH generation, whereas the numbers of calculated object points have been 
massively reduced in other methods.  

According to Eq. (4), the total numbers of calculated object points have been estimated 
to be 2,806, 2,624 and 2,474 for ‘Scenario I’ and 4,274, 4,146, and 4,062 for ‘Scenario II’ and 
2,604, 2,342, and 2,294 for ‘Scenario III’, respectively, for each case of the TR-NLUT, MC-
NLUT, and MPEG-NLUT methods. On the other hand, in the proposed method, the numbers 
of appeared object points in the 30th frames have been calculated to be 1,502, 2,514 and 1,530, 
respectively, for each case of the ‘Scenario I, II and III’. These values also represent the total 
numbers of calculated object points of the 30th frame of the proposed method according to Eq. 
(5). Thus, the total number of calculated object points of the proposed method has been 
reduced down to 65.76% of those of the conventional methods on average. It is because the 
conventional TR-NLUT, MC-NLUT, and MPEG-NLUT methods require two-step calculation 
processes of subtraction and adding of CGH patterns in both 29th and 30th frames, whereas 
only a one-step calculation process in the 30th frame is needed in the proposed method as 
explained in Chapter 3.3.  

4.3.2. Analysis on the CGH buffer sizes in the global memory of a GPU board 
Table 1 shows that the TR-NLUT and proposed methods have the least CGH buffer sizes of 
2MB (1,920 × 1,080) for all cases of ‘Scenario I, II and III’. However, those sizes of the MC-
NLUT method are increased to 4MB (1,920 × 1,080 × 2) for two cases of ‘Scenario I and II’ 
with one moving object, because two CGH buffers, one for the moving object and the other 
for the fixed objects, are needed here. For the case of ‘Scenario III’ with four moving parts of 
an object, which are arm, mouth and two eyes, five CGH buffers are thus needed. As a result, 
its total CGH buffer size is increased up to 10MB (1,920 × 1,080 × 5). On the other hand, in 
the MPEG-NLUT method, those sizes are sharply increased up to 593MB (1,920 × 1,080 × 
300) for all cases of ‘Scenario I, II and III’ under the condition that the object image with a 
resolution of 320 × 240 pixels has been divided into 16 × 16 blocks.  

These CGH buffers are then stored in the global memory of a GPU board. Here, the 
global memory tends to have long access latencies and finite access bandwidth. Moreover, 
even though many threads are available for parallel execution in the GPU board, traffic 
congestion in the global memory can degrade the calculation performance of the GPU. Thus, 
the CGH buffer size in the global memory of the GPU board as well as the number of CUDA 
kernel function calls plays a very important role in determination of the CGH calculation time. 
As shown in Table 2, the MPEG-NLUT method has been found to have the largest CGH 
buffer sizes as well as the largest numbers of CUDA kernel function calls and the longest 
calculation times in all scenarios. Moreover, as the number of blocks of the MPEG-NLUT 
method increases, its CGH calculation time increases as well. Thus, these results confirm that 
even though the MPEG-NLUT method shows a good performance in data reduction of 3-D 
video images, it may not be well matched with the algorithmic and memory structures of the 
GPU boards.  

4.3.3. Analysis on the numbers of CUDA kernel function calls 
As seen in Table 2, the proposed method shows the least numbers of CUDA kernel function 
calls of 58, 44 and 114, respectively, for the ‘Scenario I, II and III’. On the other hand, those 
numbers have been found to be 120, 102, 236 in the TR-NLUT method and 116, 104, 349 in 
the MC-NLUT method and 1,965, 1,771, 2,807 in the MPEG-NLUT method, respectively, for 
the ‘Scenario I, II and III’. In other words, the numbers of CUDA kernel function calls of the 
TR-NLUT, MC-NLUT and MPEG-NLUT methods have been increased by 206.90%, 
200.00%, 3,387.93% and 231.82%, 236.36%, 4,025.00% and 207.02%, 306.14%, 2,462.28%, 



respectively for each case of the ‘Scenario I, II and III’, when they are compared to those of 
the proposed method.  

These results have stemmed from the fact that the conventional TR-NLUT, MC-NLUT 
and MPEG-NLUT methods require two-step calculation processes, as mentioned in Chapter 
3.2. Therefore, the numbers of CUDA kernel function calls of the TR-NLUT method are 
given by the summation of NDP-AOP and NDP-DOP. In addition, those of the MC-NLUT and 
MPEG-NLUT methods are given by summations of NDP-AOP and NDP-DOP for each of the 
moving objects and for each of the blocks with moving object points, respectively, as shown 
in Table 1. Specifically, as shown in Table 2, in the MPEG-NLUT method, as the number of 
blocks increases, its data compression ratio also increases accordingly, whereas the number of 
CUDA kernel function calls rapidly increases and it causes the total calculation time of the 
MPEG-NLUT method to be greatly increased on GPU boards.  

On the other hand, the proposed OTM-NLUT method has only one-step calculation 
contrary to the conventional methods. Since the proposed method has no compensation 
process, only the moving object points of the current frame have been involved in CGH 
calculation. Thus, the total number of CUDA kernel function calls, which is given by NDP-MOP 
in Table 1, turns out to be the least value, when it is compared to those of the conventional 
TR-NLUT, MC-NLUT, and MPEG-NLUT methods. Then, it drastically reduces the total 
calculation time of the proposed OTM-NLUT method. 

4.3.4. Analysis on the calculation times and the numbers of FPSs 
As seen in Table 2, the proposed method has the least average calculation times and the 
largest average FPSs among those methods across the tested three scenarios. The average 
calculation times and the average FPSs of the conventional NLUT, TR-NLUT, MC-NLUT, 
MPEG-NLUT, and proposed OTM-NLUT methods have been found to be 168msec, 55msec, 
52msec, 1,081msec, 34msec and 6.0, 18.0, 19.1, 0.8, 29.8 for ‘Scenario I’ and 127msec, 
49msec, 48msec, 1,010msec, 34msec and 7.9, 20.3, 20.8, 0.9, 29.1 for ‘Scenario II’ and 
94msec, 52msec, 66msec, 1,684msec, 29msec and 10.7, 19.2, 15.2, 0.6, 34.3 for ‘Scenario III’, 
respectively. In other words, the average calculation times of the proposed method for each of 
the ‘Scenario I, II and III’ have been reduced by 79.76%, 38.18%, 34.62%, 96.85% and 
73.23%, 30.61%, 29.17%, 96.63% and 69.15%, 44.23%, 56.06%, 98.28%, respectively. In 
addition, the average FPS of the proposed method for each of the ‘Scenario I, II and III’ have 
been increased by 469.67%, 165.56%, 156.02%, 3,725.00% and 368.35%, 143.35%, 139.90%, 
3,233.33% and 320.56%, 178.65%, 225.66%, 5,716.67%, respectively, when they are 
compared to each of the conventional NLUT, TR-NLUT, MC-NLUT and MPEG-NLUT 
methods.  

Based on these results, the FPS of the proposed method has been found to be 31.1, while 
those of the NLUT, TR-NLUT, MC-NLUT, and MPEG methods have been calculated to be 
8.2, 19.2, 18.4 and 0.8, respectively.  That is, the proposed method has the biggest FPS value 
among them. As mentioned above, these experimental results have stemmed from the fact that 
the proposed OTM-NLUT methods has only a one-step calculation process, requiring much 
less numbers of CUDA kernel function calls and much less CGH buffer sizes in the global 
memory of a GPU board than those of the conventional methods. 

Especially, the MPEG-NLUT method has been found to have the smallest FPS value of 
0.8, which means that it is not well matched with algorithmic and memory structures of the 
GPU boards, therefore it may not be suitable for GPU-based implementation even though the 
MPEG-NLUT method, thus far, has shown the best performance in 3-D video compression. 

Successful experimental results with three test scenarios having 12,666 object points 
finally show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 
1,920 × 1,080 pixels per second on average on the NVIDIA GTX TITNAN GPU boards and 
confirm its feasibility in the practical application fields of most video calls, CCTVs, NEWS, 
and dramas in television broadcasting.  



5. Conclusions 

In this paper, a practical OTM-NLUT method, which was designed to be well matched with 
the software and memory structures of the commercial GPUs, has been proposed and 
implemented on GPU boards for real-time generation of the CGH patterns of 3-D videos. 
Experimental results reveal that the proposed method can generate 31.1 frames of Fresnel 
CGH patterns with 1,920 × 1,080 pixels per second on average for three cases of 3-D video 
scenarios with 12,666 object points on three NVIDIA GTX TITNAN GPU boards. These 
successful results confirm the feasibility of the proposed method in the practical application 
fields such as holographic video calls and television broadcasting systems. 


