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Abstract
Naive Bays Nearest Neighbor (NBNN) is a simple image classifier based on identifying nearest neighbors. NBNN uses
original image descriptors (e.g., SIFTs) without vector quantization for preserving the discriminative power of descriptors
and has a powerful generalization characteristic. It, however, has a distinct disadvantage; its memory requirement can be
prohibitively high as we have a large amount of data. We identify this problem of NBNN techniques and apply a binary
code embedding technique, i.e., spherical hashing, to encode data compactly without a significant loss of classification
accuracy. We also propose to use an inverted index to identify nearest neighbors among those binarized image descriptors.
To demonstrate benefits of our method, we apply our method to two of existing NBNN techniques with an image dataset.
By using 64 bit lengths, we are able to observe 16 times memory reduction with a higher runtime performance without
a significant loss of classification accuracy. This result is achieved by our compact encoding scheme of image descriptors
without losing much information of original image descriptors.
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I. INTRODUCTION

Image classification is a task of assigning an
appropriate class label to a query image, and has been
studied as an important task in the computer vision
field for a long time.

Among many available classification techniques,
Naive Bayes Nearest Neighbor (NBNN) [1] is
one of popular image classifiers that does not
require an explicit learning process. NBNN is
designed based on the naive Bayes assumption and
using nearest neighbor search. It usually uses
local descriptors (e.g., SIFTs), which is densely
extracted from a query image. Unlike many
other conventional image classifiers, NBNN does
not perform descriptor quantization like bags-of-
words for compact representation. Instead, NBNN
utilizes original image descriptors as they maintain
discriminative power. As the distance metric, NBNN
uses ”Image-to-class” distances measured with all the
available classes by identifying the nearest neighbor

for each local descriptor, and assigns a class that has
the minimum sum of distances to the class type of a
query image.

Thanks to characteristics of NBNN, the NBNN
approach has advantages over other learning based
techniques for image classification. NBNN is
theoretically simple and easy to implement. As a
result, it is also easy to modify NBNN for a particular
purpose. For example, NBNN is adjusted for solving
domain adaptation problems [2]. Furthermore,
NBNN shows high generalization power [3], since it
works mainly in a data-driven way without tuning
parameters for a particular dataset.

Recently, Convolutional Neural Networks
(CNNs) [4] are achieving high classification ac-
curacy and thus receiving significant attention.
Also, its follow-up studies are being actively con-
ducted [5, 6]. Interestingly, there is a recent study [7]
in the direction of combining CNNs and NBNN
for achieving even higher accuracy. Furthermore,
NBNN techniques can be used in situations where
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using deep CNNs is not appropriate due to their
long training time.

Nonetheless, NBNN has certain drawbacks such as
low accuracy compared to recent convolutional neural
net based approaches, slow runtime performance,
and high memory requirement. Accuracy and slow
performance have been addressed by many prior
approaches [8, 9, 10, 3], but the memory issue has
not been well addressed, according to the best of our
knowledge.

Main contributions. In this paper, we propose
a memory-efficient NBNN technique. To compactly
represent image descriptors, we apply a binary code
embedding technique to map original local image
descriptors into short binary codes. We then perform
approximate, yet fast nearest neighbor search by
using an inverted index structure associated with
those binary codes.

To verify benefits of our method, we test our
method against a standard image dataset, and
compare our method against two well-known NBNN
approaches, the original NBNN and the local NBNN
that improves the performance of the original NBNN.
By using our method, we are able to observe faster
running performance and lower memory requirement
without a significant loss of classification accuracy.
Especially, when we use 64 bit lengths for binary
codes, we are able to achieve 16 times memory
reduction over those two NBNN approaches, while
12 times and 1.125 times faster running performance
over the original and local NBNNs, respectively.
These results are achieved by accurately embedding
original descriptors into compact binary codes. To
encourage further research, source codes of our
approach will be available1.

II. RELATED WORK

In this section, we review prior approaches that are
directly related to our method.

A. NBNN

NBNN[1] uses original image descriptors to preserve
the discriminative power of the features instead
of using descriptor quantization method like bag-
of-words, which is used in many other image
classifiers. In addition, NBNN utilizes the image-
to-class distance metric in order to generalize the
characteristics of each class in contrast to other
methods using the classical image-to-image distance.
Therefore, it can classify images successfully by
searching similar local descriptors to the query
descriptors among all the descriptors, even if there
are no matching images to the query image in the
dataset.

1http://sglab.kaist.ac.kr/projects/NBNN Memory

To address drawbacks of the original NBNN and
extend it to other related problems, many studies
have been proposed. Optimal NBNN [11] studied
parameters to consider the assumptions that were
made for designing NBNN, and dependencies among
the local features are also studied [10]. Recently,
NBNN was utilized for data adaptation problem [2]
and image retrieval [7].

In order to address a high runtime overhead in
querying, McCann et al. [9] proposed local NBNN,
which only calculates the distance from the query
descriptors to others in a single time, instead of
performing the search iteratively with all the classes.
However, the memory scalability problem arisen from
using unquantized original descriptors is not well
considered yet.

Nearest neighbor search. Exact or approximate
nearest neighbor search has been widely studied. One
of most common acceleration data structures for the
search is kd-trees [12]. kd-trees were also widely
adopted in many computer vision techniques and
various optimization techniques with kd-trees have
been proposed [13]. Some of well-known optimization
techniques in the computer vision field include
randomized kd-trees [14] and relaxed orthogonality
of partition axes [15]. Muja and Lowe [16] have
proposed an automatic parameter selection algorithm
of some of the aforementioned techniques (e.g., [14]).
Nonetheless, many hierarchical techniques including
ones based on kd-trees have been known to work
ineffectively for high dimensional problems.

B. Hashing

As an approximate, yet scalable nearest neighbor
search approach, hashing techniques have been
extensively studied recently. These techniques can
be broken into two categories: data-independent
and data-dependent techniques. Data-dependent
techniques [17, 18] can produce more high accuracy
for the search problem, by computing hashing
functions considering input data. Unfortunately,
most these techniques tend to rely upon learning
techniques or to require high computation time and
thus we focus on data-independent techniques, which
are more suitable for NBNN approaches.

The most well-known technique under the data-
independent category is locality sensitive hash-
ing [19]. This technique draws hyperplanes randomly
from a certain distribution function, and uses them
for hashing functions. This technique has been gen-
eralized into many different directions including ones
to support different distance metrics [20] and GPU
acceleration [21].

These hashing functions can be used for encoding
input data into binary codes. Recently, hypersphere
based hashing function and binary code embedding
technique is proposed [22]. This technique can
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generate more closed regions in high dimensional
spaces, resulting in a high accuracy for approximate
neighbor search. This property can preserve the
distances between the original data well with their
corresponding binary codes. Thanks to this high
accuracy, we adopt to use it for encoding image
descriptors and using their binary codes for NBNN
techniques.

III. MEMORY-EFFICIENT NBNN

In this section, we first explain the original NBNN
technique. We then explain two main components of
our method: binarization and inverted indexing.

A. NBNN based classification

Let us represent an image I as a set of local
descriptors, i.e., I = {d1, d2, · · · , dn}. In order
to classify the image with NBNN, we define and
measure the image-to-class distance, DItC , which
uses a descriptor-to-class distance, DDtC . We also
define NNc(d) to be the nearest neighbor descriptor
to the given descriptor d among descriptors assigned
to the class c. The descriptor-to-class and image-to-
class distances can be then defined as follows:

DDtC(d, c) = ||d−NNc(d)||, (1)

DItC(I, c) =

n∑
i=1

DDtC(di, c), (2)

where n is the number of the local descriptors
extracted from the image I.

NBNN identified a class of an image I according
to the following equation, which is derived by
simplifying the maximum likelihood classifier based
on the naive Bayes probabilistic model [1]:

ĉ = argmin
c

DItC(I, c). (3)

NBNN technique relies on computing the nearest
neighbor given a descriptor. This nearest neighbor
search is efficiently supported by Approximate
Nearest Neighbor (ANN) search methods using kd-
trees [12]. By utilizing kd-trees, we can achieve fast
search performance. Nonetheless, we found that this
nearest neighbor search is still the main bottleneck of
NBNN and can take 85% of the total computation of
the NBNN method in our experiment. Furthermore,
the memory requirement of storing local descriptors
and such tree-based indexing structure is high.

B. Binarization of descriptors

Our main goal is to perform nearest neighbor
search in a memory-efficient manner, which is the
main computational component of NBNN techniques.
Fortunately, nearest neighbor search has been studied
well even for high-dimensional data such as our

image descriptors. Especially, for such high-
dimensional problems, hashing techniques have been
demonstrated to work well and well-known examples
include locality sensitive hashing [19]. These hashing
techniques can work as binary code embedding that
compactly represents data points based on hashing
functions.

In order to present image descriptors as a
binary code for our problem, we utilize spherical
hashing [22]. Spherical hashing is one of the state-of-
the-art methods to represent high dimensional points
into compact binary codes. Most prior works used
hyperplanes to partition data into two sets and to
encode those partitioned data with one bit (0 for one
set or 1 for the other set).

On the other hand, spherical hashing computes
binary codes based on hyperspheres, each of which
tightly bounds input data. While D + 1 hyperplanes
are required to define a closed region in a D
dimensional space, one hypersphere is enough to
define such a closed region. In other words, the
average of the maximum distance among points
with the same binary code can be bounded, and
thus errors caused by representing original data into
such binary codes can be bounded too, resulting in
better approximate nearest search while compactly
representing data. Thanks to this property, spherical
hashing has been demonstrated to show higher
accuracy over other hyperplane based techniques
given the same number of bit lengths. Nonetheless,
any binary code embedding techniques can be used
instead of spherical hashing, our chosen method for
this work.

Suppose that we represent an image descriptor, d,
to a binary code, b, by using a binary code embedding
or hashing method, h(·); i.e. b = h(d). The image
I is then represented as a set of binary codes, Ib =
{b1, b2, · · · , bn}, which are computed by applying the
hashing function to the original image descriptors.

Once we represent descriptors into binary codes,
we cannot use distance functions defined with those
original image descriptors. Instead, we define a
distance function between a binary code and a class,
DBtC , as the following:

DBtC(b, c) = HD(b,NNc(b)), (4)

where HD(·, ·) is the Hamming distance between two
binary codes. By replacing DDtC by DBtC in Eq. 2
and 3, we have the classification function for our
method using binary codes:

DIbtC(I, c) =

n∑
i=1

DBtC(bi, c), (5)

ĉ = argmin
c

DIbtC(I, c). (6)

While we can represent image descriptors with
binary codes, we lose information of original image
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Fig. 1. The top row (a) shows the inverted indexing structure for our method, while the bottom row (b) shows how
to access the structure to identify nearest neighbors. Blue, red, green dots represent training image descriptors, cluster
centers, and a query image descriptor, respectively.

descriptors during binary code embedding. As a
result, the accuracy of our approximate nearest
neighbor search goes down, as a smaller bit is used
for encoding binary codes. We discuss behaviors of
accuracy and memory requirement of bit lengths in
Sec. IV.

C. Indexing

We can reduce the memory requirement by applying
binary hashing to the image descriptors. We still,
however, have the issue of query time scalability.
As the nearest neighbor operation on original image
descriptors causes a time scalability problem taking
most of the query time in the original NBNN, the
nearest neighbor operation on binary codes can also
cause a similar problem if we use a linear search
algorithm to find the closest code.

To address this time scalability problem, we need a
proper indexing method to perform accurate, yet fast
nearest neighbor search. Unfortunately, ANN using
kd-trees can be applied even to the nearest neighbor
search on binary codes, but its performance would be
very inefficient, since kd-trees have been to work well
mainly for low-dimensional problems.

To support an efficient search of identifying nearest
neighbors to the given query, we adopt an inverted

indexing structure as illustrated in Fig. 1. To build
the inverted index, we perform the following steps:

1. Computing clusters. We perform k-means
clustering on the original descriptors to build
clusters. Any clustering methods can be
used instead of the simple k-means clustering.
Especially, product quantization has been
demonstrated to work well with binary codes and
high-dimensional descriptors [23].

2. Assigning to the closet cluster. For
each original descriptor, we identify its closest
cluster by computing the distance between the
descriptor and centers of clusters. Instead of
storing the original descriptor, we compute a
binary code of the descriptor and associate the
binary code with the cluster. We can then
efficiently organize our inverted index with our
binary codes. When we want to access their
original descriptors and images, we also store
these data associated with each cluster in a
secondary memory space (e.g., disk).

For simplicity, we explained the simple, inverted
index. Recently, multi-index has been proposed [24],
and can be more complex, yet more efficient for large-
scale problems.
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At a query time, we use the computed inverted
index as the following:

1. Finding the nearest cluster. Given a query,
we identify the nearest cluster among the cluster
centers.

2. Identifying k nearest neighbors. Given the
nearest cluster, we access binary codes of image
descriptors associated with the cluster. We first
convert the image descriptor of the query into a
binary code. We then measure the Hamming
distances between binary codes of the query
and others associated with the cluster. By
performing sorting according to the computed
Hamming distance, we can identify k nearest
neighbors.

By using the inverted index, we can efficiently
identify potential candidates of k nearest neighbors
from the query data. The aforementioned inverted
index requires the number clusters for computing
center clusters. Depending on the number of clusters,
we can control the number of descriptors per each
cluster. In Sec. IV-B, we discuss effects of varying
number of clusters.

IV. EXPERIMENTS

In this section, we performed experiments to
compare the performance of our memory efficient
NBNN to those of original NBNN and local NBNN
methods. Especially, we focused on the query time,
classification accuracy, and memory usage of different
NBNN based image classification methods.

A. Implementation and Datasets

We used 101 classes of Caltech-101 image dataset [25],
excluding the background class. We utilized densely
extracted SIFTs [26] as the local descriptors. For
extracting SIFTs densely, we divide an image into
multi-resolution grids instead of using an ordinary
keypoint extracting algorithm, and extracted features
in a multi-scale manner.

We followed the experiment protocol laid out by
the prior work [1] to set the experiment environment
for our paper. We randomly choose 15 training
images and 15 test images for each class. 64 bit code
length is used, unless mentioned otherwise, when
binary code embedding is applied to descriptors.

We implemented NBNN [1] and local NBNN [9]
based on guidelines mentioned in their corresponding
papers. These methods utilize a fast approximate
nearest neighbor search method, FLANN [27], to
efficiently identify nearest neighbors based on kd-
trees. We use L1 and L2 distances to calculate
the distance between original image descriptors, and
use the Hamming distance to measure the distance
between binary codes for our method.

The memory requirement of our methods can be
controlled by changing the number of bits used
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respectively), while maintaining or showing even higher
classification accuracy. For the test, we use 64 bit code
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encoded by 128 bytes. In terms of image descriptors, there
is no difference between NBNN and local NBNN methods.

for the hashing function. For example, if we
use 64 bits code length for our hashing function,
which is long enough to maintain the classification
accuracy in most cases, a single SIFT descriptor
whose size is 128 B can be reduced by a factor
of 16 times. Even though the order of the space
complexity remains unchanged, reducing the memory
requirement even with a constant factor is highly
effective. Especially when the raw data size that
is bigger than hardware memory capacity is reduced
and fit into the available memory capacity, we can
observe drastic performance improvement, due to the
drastic difference of accessing speed between main
memory and auxiliary memory like a hard disk [28].

B. Results

We performed experiments to compare the perfor-
mance of our memory-efficient NBNN classifier com-
bined with spherical hashing (NBNN+SH) with the
original NBNN. We also apply spherical hashing to
the Local NBNN method (Local NBNN+SH) [9]
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and compare its performance with the original lo-
cal NBNN (Local NBNN). The classification accu-
racy and query time of tested classification methods
are shown in Fig 2. We measure classification ac-
curacy as the ratio of the correctly classified query
images over all the test images. The average query
time per image is calculated by measuring the total
time taken for classifying all test images and dividing
it by the number of test images.

We set the number of clusters to be 30 in
NBNN+SH and 2000 in Local NBNN+SH; our
methods also adopt the same numbers of clusters.
We set these parameters differently because when
the number of descriptors in an indexing scheme
becomes bigger, the number of clusters should be
bigger for better performance. For NBNN, the
number of descriptors in a single indexing scheme
is much smaller than that of Local NBNN, because
NBNN builds an indexing structure for each class,
while Local NBNN manages all the descriptors in a
single indexing structure.

First of all, we observe faster running time and
higher accuracy by using the local NBNN over the
original NBNN, as demonstrated by the paper of
local NBNN [9]. Furthermore, by using our method
applying the spherical hashing and the inverted
index to those prior NBNN techniques, we are
able to observe higher query performance without a
significant loss of accuracy. For the case of NBNN,
the query performance of NBNN+SH is more than
10 times faster than that of NBNN even with a slight
accuracy improvement. This drastic performance
improvement is achieved mainly because computing
the Hamming distance between binary codes is much
faster than the Euclidean computation between the
original SIFT descriptors. We also conjecture that
hashing, a type of dimension reduction techniques,
cancels variance of image descriptors of the same
object, resulting in a slightly higher accuracy in this
case.

We observe the similar trend even between Local
NBNN+SH and Local NBNN. Comparing Local
NBNN+SH to Local NBNN, ours shows about
three times performance improvement, while the
classification accuracies are also similar.

We also measure the memory requirement of
different methods. Our methods combined with
spherical hashing show a significant advantage over
the original NBNN methods, because only 8 bytes
are used to represent a binary code, while 128 bytes
are needed to represent one SIFT descriptor. This
difference results in 16 times less memory usage
excluding the overhead for constructing the indexing
scheme, while preserving classification accuracy and
improving query time. Fig 3 shows the memory
requirements of different methods tested in our
experiment environment. Considering that the SIFT
descriptor is relatively lower dimensional data among

available image descriptors, more advantage can
be observed in higher dimensional spaces such as
features from convolutional neural nets.

We also investigate effects of having different
numbers of clusters of our indexing structure used
with the binary codes (Table I). For the test, we use
the local NBNN combined with spherical hashing. In
all the tested cases, the classification accuracies are
similar to each other, ranging between 42% and 46%.
The overall query time is getting smaller when the
number of clusters gets larger, but gets longer when
the number of clusters becomes too large (e.g., 4 k
clusters) for the tested dataset. When we have a
small number of clusters, finding the nearest cluster
is fast, but the cluster is associated with many images
and thus it requires a long computation time to find
the nearest image among them given the query image.
On the other hand, when the number of clusters is too
high, finding the nearest cluster takes a long time,
resulting in a longer computation time. Given this
trade-off, the best performance is achieved when we
have 2 k clusters for the tested benchmark.

While our methods are not directly tested on large-
scale data consisting of more than one million images,
we discuss the memory requirement briefly here when
different NBNN methods are applied to such a large-
scale data. In the case of ILSVRC2010 [29], which
is one of the popular large-scale image dataset and
consists of 1000 classes, the memory requirement for
descriptors is less than 2 GB for the local NBNN+SH,
when 500 training images are used for each class. On
the other hand, more than 30 GB is required for using
the local NBNN. We assume that 512 SIFT features
are extracted from each image as same as the case of
the other tested experiment with the Caltech image
dataset.

V. CONCLUSION & FUTURE WORKS

In this paper, we have applied a binary code
embedding, spherical hashing, to NBNN based image
classifiers to compactly represent descriptors used
for classifiers. We have also tested the inverted
index for efficiently perform approximate nearest
neighbor search with those computed binary codes.
To demonstrate benefits of our methods, we have
tested them in a well-known benchmark, Caltech-
101 image dataset. When we use 64 bit lengths, we
were able to observe that the proposed methods show
similar classification accuracy and query speed, while
reducing the memory requirement by a factor of 16
over prior NBNN methods. This is mainly achieved
thanks to accurate binary code embedding adopted
together with the inverted index structure.

Many interesting research directions lie ahead. We
would like to utilize global image features such as
features from convolution neural net [4]. Because
NBNN classifiers assume local image descriptors
as local features, extending NBNN classifiers to
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Table I. Effects of having varying numbers of clusters for Local NBNN+SH. We achieve the best performance when we
have 2 k clusters for the local NBNN combined with spherical hashing.

The number of clusters
50 100 1000 2000 4000

Query time (ms) 2144 1060 146 123 322
Time for finding nearest center(ms) 16 33 31 33 34

Time for finding nearest binary code(ms) 1610 791 99 69 50
Accuracy 44.09 42.90 44.88 44.42 42.97

work with global features is an interesting research
problem. Since we have verified benefits of the
inverted index structure, it would be worthwhile
to investigate other advanced techniques such as
multi-index and recent shortlist selection method [24]
designed for efficient, high-dimensional nearest
neighbor search. We believe that this line of research
helps to improvement the scalability of NBNN based
approaches, which is one of important data-driven
classification methods.
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