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초 록

영아들은 주위의 대상을 지속적으로 관찰하고 상호 작용함으로써 실세계 모델을 매우 빠르게 학습하고 구

축할 수 있습니다. 영아들이 구축하는 가장 근본적인 직감 중 하나는 직관적 물리입니다. 인간 유아는

추후 학습을 위한 사전 지식으로 사용되는이 모델을 배우고 개발합니다. 인간 유아가 보여준 그러한 행동에

영감을 받아 강화 학습과 통합된 물리 네트워크를 소개합니다. pybullet 3D 물리 엔진을 사용하여 물리

네트워크가 객체의 위치와 속도를 매우 효과적으로 추론 하고, 강화 학습 네트워크는 에이전트가 내재적

동기만을 사용하여 객체와 지속적으로 상호 작용함으로써 모델을 개선 하는 것을 보여주고자 합니다. 또한

직관적 물리 모델을 가장 효과적으로 개선 할 수있는 작업을 효율적으로 선택할 수있는 보상 정규화 트릭을

소개합니다. 우리는 고정 및 비 고정 상태 문제 모두에서 모델을 실험하고 에이전트가 수행하는 다양한

작업의 수와 직관 모델의 정확성을 측정하여, 본 연구의 우수성을 보이고자 합니다.

핵 심 낱 말 직관적 물리, 강화 학습, 내재적 동기

Abstract

At an early age, human infants are able to learn and build a model of the world very quickly by constantly

observing and interacting with objects around them. One of the most fundamental intuitions human

infants acquire is intuitive physics. Human infants learn and develop these models which later serve

as a prior knowledge for further learning. Inspired by such behaviors exhibited by human infants, we

introduce a graphical physics network integrated with reinforcement learning. Using pybullet 3D physics

engine, we show that our graphical physics network is able to infer object’s positions and velocities very

effectively and our reinforcement learning network encourages an agent to improve its model by making

it continuously interact with objects only using intrinsic motivation. In addition, we introduce a reward

normalization trick that allows our agent to efficiently choose actions that can improve its intuitive physics

model the most. We experiment our model in both stationary and non-stationary state problems, and

measure the number of different actions agent performs and the accuracy of agent’s intuition model.

Keywords Cognitive Science, Intuitive Physics, Reinforcement Learning, Intrinsic Motivation
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Chapter 1. Introduction

Various studies in human cognitive science have shown that humans rely extensively on prior knowledge

when making decisions. Reinforcement learning agents require hundreds of hours of training to achieve

human level performance in ATARI games, but human players only take couple hours to learn and play

them at a competent level. This observation begs the question, what prior knowledge do humans have

that accelerates their learning process? Recent works [Lake et al.(2017)Lake, Ullman, Tenenbaum, and

Gershman] suggest that there are two core ingredients which they call the ‘start-up software’: intuitive

physics and intuitive psychology. These intuition models are present at a very early stage of human

development and serve as core knowledge for future learning. But how do human infants build intuition

models?

Imagine human infants in a room with toys lying around at a reachable distance. They are constantly

grabbing, throwing and performing actions on objects; sometimes they observe the aftermath of their

actions, but sometimes they lose interest and move on to a different object. The “child as scientist” view

suggests that human infants are intrinsically motivated to conduct their own experiments, discover more

information, and eventually learn to distinguish different objects and create richer internal representations

of them [Lake et al.(2017)Lake, Ullman, Tenenbaum, and Gershman]. Furthermore, when human infants

observe an outcome inconsistent with their expectation, they are often surprised which is apparent

from their heightened attention [Baillargeon(2007)]. The mismatch between expectation and actual

outcome (also known as expectancy violations) have shown to encourage young children to conduct more

experiments and seek more information [?, ?].

Inspired by such behaviors, in this paper, we explore intrinsically motivated intuition model learning

that uses loss signals from an agent’s intuition model to encourage an agent to perform actions that will

improve its intuition model (illustrated in Figure 1.1). Our contribution in this paper is twofold: (1)

we propose a graphical physics network that can extract physical relations between objects and predict

their physical behaviors in a 3D environment, and (2) we integrate the graphical physics network with

the deep reinforcement learning network where we introduce the intrinsic reward normalization method

that encourages the agent to efficiently explore actions and expedite the improvement of its intuition

model. The results show that our actor network is able to perform a wide set of different actions and our

prediction network is able to predict object’s change in velocity and position very accurately.
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Figure 1.1: This diagram illustrates how an agent chooses an action based on loss incurred from its

predictor which tries to mimic the behavior of an environment (or a subset of an environment). (1) After

making an observation at time t, the agent’s actor module chooses an action. (2) The predictor module

takes the action and the observation at time t and makes a prediction; (3) the predictor module then

compares its prediction to the observation from the environment at t+ 1 and (4) outputs a loss. (5) The

loss value is converted into an intrinsic reward by the internal motivator module and is sent to the actor’s

replay buffer to be stored for future training.

2



Chapter 2. Approach

In this section, we explain representations of objects and their relations, followed by our internal

motivator.

2.0.1 Representation

We represent a collection of objects as a graph where each node denotes an object and each edge

represents a pairwise relation of objects. Due to its simple structure, we use sphere as our primary object

throughout this paper. Given N different objects, each object’s state, sobji , consists of its features, dobji ,

and its relations with other objects:

dobji = [x, y, z, vx, vy, vz, Fx, Fy, Fz, r,m] , (2.1)

rij = fr(dobji , dobjj ) , (2.2)

Robji =
[
ri1 ri2 · · · riN

]T
, (2.3)

eobji =
∑

i 6=j,j∈[1,N ]

rij , (2.4)

sobji = [dobji , eobji ] , (2.5)

where dobji contains object’s Euclidean position (x, y, z), Euclidean velocity (vx, vy, vz), Euclidean force

(Fx, Fy, Fz), size r and mass m. Some of these features are not readily available upon observation, and

some works have addressed this issue by using convolutional neural networks [Lerer et al.(2016)Lerer, Gross,

and Fergus, Watters et al.(2017)Watters, Zoran, Weber, Battaglia, Pascanu, and Tacchetti, Fragkiadaki

et al.(2015)Fragkiadaki, Agrawal, Levine, and Malik]; in this paper, we assume that these features are

known for simplicity. To provide location invariance, we use an object-centric coordinate system, where

the xy origin is the center of the sphere’s initial position and the z origin is the object’s initial distance to

a surface (e.g. floor).

Relation Encoder An object’s state also includes its pairwise relations to other objects. A relation

from object i to object j is denoted as rij and can be computed from the relation encoder, fr, that takes

two different object features, dobji and dobjj , and extracts their relation rij (shown in Eq. (2.2)). Note

that rij is directional, and rij 6= −rji. Once all of object’s pairwise relations are extracted, they are stored

in a matrix, Robji . The sum of all pairwise relations of an object yields eobji , and when concatenated

with the object feature dobji , we get the state of the object sobji .

An observation is a collection of every object’s state and its pairwise relations:

obs = [(sobj1 ,Robj1), (sobj2 ,Robj2)), · · · , (sobjn ,Robjn)] .

2.0.2 Object-based Attention

When an agent performs an action on an object, two things happen: (1) the object on which action

was performed moves and (2) some other object (or objects) reacts to the moving object. Using the

terms defined by [Chang et al.(2016)Chang, Ullman, Torralba, and Tenenbaum], we call the first object

focus object and the other object relation object. Given the focus object and the relation object, we

3



associate agent’s action to the observation of both focus object and relation object. The agent’s job is to

monitor the physical behaviors of both objects when selected action is performed and check whether its

action elicited intended consequences.

2.0.3 Internal Motivator

ATARI games and other reinforcement learning tasks often have clear extrinsic rewards from the

environment, and the objective of reinforcement learning is to maximize the extrinsic reward. In contrast,

intuition model learning does not have any tangible reward from the external environment. For example,

human infants are not extrinsically rewarded by the environment for predicting how objects move in the

physical world.

In order to motivate our agent to continuously improve its model, we introduce an internal motivator

module. Similar to the work of [Pathak et al.(2017)Pathak, Agrawal, Efros, and Darrell], the loss value

from an intuition model of an agent is converted into a reward by the internal motivator module φ:

rintrinsict = φ(losst) , (2.6)

where rintrinsict is the intrinsic reward at time t, and losst is loss from a prediction network at time

t.While not having any extrinsic reward may result in ad hoc intrinsic reward conversion methods, we

show that our model actually benefits from our simple, yet effective intrinsic reward normalization method.

Note that while our method adopted to use the prediction error as the loss based on a prior work [Pathak

et al.(2017)Pathak, Agrawal, Efros, and Darrell, ?], our approach mainly focuses on constructing an

intuitive physics model, while the prior approaches are designed for the curiosity-driven exploration in a

game environment.

Intrinsic Reward Normalization In conventional reinforcement learning problems, the goal of an

agent is to maximize the total reward. To do so, it greedily picks an action with the greatest Q value. If

that action does indeed maximize the overall reward, the Q value of that action will continue to increase

until convergence. However, sometimes this could cause an agent to be stuck in a sub-optimal policy in

which the agent is oblivious to other actions that could yield a greater total reward.

To ameliorate the problem of having a sub-optimal policy, the most commonly used method is a

simple ε-greedy method, which randomly chooses an action with ε probability. This is a simple solution,

but resorts to randomly picking an action for exploration. An efficient way for exploration in stationary

state setting with discrete actions is to use the upper confidence bound (UCB) action selection [Sutton &

Barto(1998)Sutton and Barto]:

at = arg max
a

[
Qt(a) + c

√
ln t

Nt(a)

]
,

where Qt(a) is the Q value of action a at time t, Nt(a) is the number of times action a was chosen.

However, this method has several shortcomings: (1) it is difficult to be used in non-stationary states since

UCB does not take states into account, and (2) it can be more complex than ε-greedy method since it

needs to keep track of the number of actions taken. Notice that this heuristic assumes that Q value of

some action a at time t, or Qt(a), converges to some upper bound U ∈ R; i.e., Qt(a)→ U− as t→∞.

Intuitive physics learning is, however, slightly different from that of conventional reinforcement

learning in that lim
t→∞

Qt(a) = 0 ∀a. To show this, assuming that our intuition model improves in accuracy,

it is equivalent to saying that loss is decreasing: losst → 0 as t→∞ . Earlier, we defined our intrinsic

reward rintrinsict = φ(losst) at Eq. (2.6). Since losst → 0, we know that rintrinsict → 0 as long as φ is a

4



Figure 2.1: This shows a detailed diagram of our overall approach shown in Fig. 1.1. (Bottom Right)

For every pair of objects, we feed their features into our relation encoder to get relation rij and object i’s

state sobji . (Top Left) Using the greedy method, for each object, we find the maximum Q value to get

our focus object, relation object, and action. (Top Right) Once we have our focus object and relation

object, we feed their states and all of their relations into our decoders to predict the change in position

and change in velocity.

continuous and increasing function. In both stationary and non-stationary state problems, if we train

Qt(a) to be rintrinsict , we can show that lim
t→∞

Qt(a) = 0. However, if we train Qt(a) in an infinite state

space, we cannot prove that Qt(a)→ 0) due to the complicated nature of asymptotic analysis Am I right?.

I’m not sure. This is a bit more complex. I’d prefer just not mentioning it for now and come back later

In order to capitalize on this property, we first normalize φ(losst) by some upper bound U to get a

normalized reward:

Rintrinsic
t =

φ(loss)

U
, (2.7)

which restricts Rintrinsic
t ∈ [0, 1]. Additionally, we normalize all Qt(a) by using the following equation,

which is also known as the Boltzmann distribution of actions [Sutton & Barto(1998)Sutton and Barto]:

Qt(a) =
[ eQt(a)∑|A|

k=1 e
Qt(k)

]
, (2.8)

At = arg max
a′

Qt(a
′) , (2.9)

where Qt(a) is the normalized Q value of action a at time t, |A| is the cardinality of the discrete action

space, and At is the action with the highest, normalized Q value.

Given Qt(a) ∈ [0, 1] and Rintrinsic
t ∈ [0, 1], as we train Qt(a) with Rintrinsic

t using gradient descent,

this will naturally increase Qt(a) of actions that have not been taken according to our normalization step

(Eq. (2.8)); i.e., Qt(a
′) of a′ actions that have been taken decreases and thus other actions that were not

taken will have relatively bigger Q values.

Compared to other methods such as UCB, our method has the benefit of not needing to explicitly

keep track of the number of actions taken, and instead takes advantage of the decreasing behavior of loss

values to encourage exploration. Moreover, because our method does not keep track of actions, it can be

used in non-stationary state problems as well, which we show later in Sec. ??.
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2.0.4 Replay Buffers

Our agent has two separate replay buffers: one to store object’s reward values to train the actor

(actor replay buffer) and another to store the physical behaviors of objects to train the intuitive physics

model (prediction replay buffer). For both networks, past experiences are sampled uniformly despite

the fact that human brains are able to selectively retrieve past experiences from memory.

Despite uniform sampling, as our agent continuously experiments with objects, both replay buffers

are more likely to contain experiences that the agent predicted with low accuracy. This is because our

agent will greedily choose an action with the greatest Q value as shown in Eq. (2.9) and by design, action

with the greatest Q value also has the greatest loss (equivalently low accuracy) by Eq. (2.7). Nonetheless,

if the replay buffer is not big enough, this could let the agent overfit its intuitive physics model to

experiences with high stochasticity. An ideal solution is to let agent curate its replay buffer content to

find a set of experiences that can maximize the generalizability of the network. There are works that

have addressed similar issues such as prioritized replay buffer [?]. However, we use uniform sampling in

our work for its simplicity.

6



Chapter 3. Model

Using deep neural networks, our agent network can be separated into three different sub-networks:

relation encoders, deep Q network, and position & velocity decoders, illustrated in Fig. 2.1.

3.0.1 Deep Q Network

Inspired by the recent advances in deep reinforcement learning [Mnih et al.(2015)Mnih, Kavukcuoglu,

Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, and etc, Schulman et al.(2015)Schulman, Levine,

Moritz, Jordan, and Abbeel, Schulman et al.(2017)Schulman, Wolski, Dhariwal, Radford, and Klimov,

Silver et al.(2014)Silver, Lever, Heess, Degris, Wierstra, and Riedmiller], we use the object oriented

[Diuk et al.(2008)Diuk, Cohen, and Littman] deep Q network to choose three things: (1) focus object, (2)

relation object, and (3) action.

For each object, our deep Q network takes Robji and sobji as input and computes (N − 1) × |A|
matrix, whose column represents action Q values and row represents obji’s relation object. Computing

this for all objects, the final output of the network has a shape of N × (N − 1)× |A|, which we call Q,

shown in the top left module

in Fig. 2.1. Our agent greedily finds focus object, relation object and action:

focus object, relation object, action = arg max
i,r,a

Qi,r,a ,

where i indicates the focus object index, r is the relation object index, and a denotes the action index.

Our deep Q network does not use a target network, and the actor replay buffer samples experiences

of every object, instead of randomly sampling from all experiences uniformly. This is done to prevent an

agent from interacting with only one object and from generalizing the behavior of one object to other

objects.

With this setup, we set our stationary state target Q value, yst , to be:

yst = Rt
intrinsic ,

and non-stationary state target Q value, ynst , to be

ynst =

Rintrinsic
t if reset occurs at t+1

min(1, (Rintrinsic
t + γmaxa′ Qa′(st+1

obji
))) o.w.

, (3.1)

where γ is a discount factor in [0, 1] and objects’ states reset when one of the objects goes out of bounds.

We provide details of non-stationary state experiment and bounds in Sec. 4. For stationary state problems,

since there is only single state, we only use Rintrinsic
t to update our Q value. For non-stationary problems,

we take the subsequent state into account and update the Q value with the sum of reward and discounted

next state Q value. Note that our Q values and rewards reside in [0, 1] because of the reward normalization

method; therefore, when the sum of reward and discounted next state reward exceeds 1, we clip the target

value to 1.

3.0.2 Position & Velocity Decoders

The predicted position and velocity of each object is estimated by the predictor module which is

placed inside a green box in Fig. 2.1).

7



An object’s state, sobji and all of its pairwise relations, Robji , are fed into both position and velocity

decoders to predict the change in position and change in velocity of obji. For each pairwise relation, rij ,

we get an output dposi,rij from the position decoder and dveli,rij from the velocity decoder.

Once all relations are accounted for, the sum of all dposi,rij and dveli,rij are the final predicted

change in position, dposobji , and predicted change in velocity, dvelobji , of an object i:

dposobji =
∑

i 6=j,j∈[1,N ]

dposobji,ri,j ,

dvelobji =
∑

i 6=j,j∈[1,N ]

dvelobji,ri,j ,

We train both decoders and relation encoder with the sum of mean squared errors of positions and

velocities:

loss =
∑

k={i,r}

||dposobjk − dpos′objk ||2

+ ||dvelobjk − dvel′objk ||2 ,

where i is the focus object index and r is the relation object index. dpos′objk and dvel′objk are the ground

truth change in position and velocity of an object, and are readily available by the physics engine.
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Chapter 4. Experiment Setup

Objects In our experiment, we use spheres as primary objects due to its simple structure (i.e. we

can represent an object with only one variable - radius). We use the center of the sphere as its xy position

and its distance to a surface, i.e. floor, as z position. We used pybullet as our physics simulator with

timestep of 1/240 seconds with 30 fps. As shown in Figure 4.1, we use three different scenes: 3-object,

6-object, and 8-object scenes. Objects are color coded so that each denotes different weight: red is 1kg,

green is 0.75kg, blue is 0.5kg, and white is 0.25kg. Each object can have radius of 5cm or 7.5cm.

Normalized Action Space We provide an agent with actions in three different directions: x, y

and z. We experiment with a set of 27 actions (x, y ∈ {−1.0, 0.0, 1.0} and z ∈ {0.0, 0.75, 1.0}), and a

set of 75 actions (x, y ∈ {−1.0,−0.5, 0.0, 0.5, 1.0} and z ∈ {0.0, 0.75, 1.0}). An action chosen from the Q

network is then multiplied by the max force, which we set to 400N.

Performance Metric Unlike conventional reinforcement learning problems, our problem does not

contain any explicit reward that we can maximize on. For that reason, there is no clear way to measure

the performance of our work. Outputs from both prediction network and deep Q network rely heavily

on how many different actions the agent has performed. For instance, if an agent performs only one

action, the prediction loss will converge to 0 very quickly, yet agent would have only learned to predict

the outcome of one action. Therefore, we provide the following performance metrics to see how broadly

our agent explores different actions and how accurately it predicts outcomes of its actions:

• Action Coverage We measure the percentage of actions covered by an agent. There are in total

of N × (N − 1) × |A| many actions for all pairs of objects. We use a binary matrix, M , to keep

track of actions taken. We say that we covered a single action when an agent performs that action

on all object relation pairs for every focus object. In short, if
∏

i,rMi,r,ak
= 1 for some action ak,

then we say it covered the action ak. Action coverage is then computed by (
∑

a

∏
i,rMi,r,a)/|A|.

Action coverage value will tell us two things: (1) whether our predictor module is improving and

(2) whether our agent is exploring efficiently. If the predictor module is not improving, the intrinsic

reward associated with that action will not decrease, causing the agent to perform the same action

repeatedly.

• Prediction Error Once an agent has tried all actions, we use prediction error to test whether

agent’s predictor module improved.

For other hyperparameters, we set the upper bound U to be infinity and φ to be an identity function.
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Figure 4.1: Experiments in three different scenes: 3-object, 6-object and 8-object scenes. Colors represent

different weights where red is 1kg, green is 0.75kg, blue is 0.5kg and white is 0.25kg. The radius of each

object can be either 5cm or 7.5cm. We experiment in two scenarios: stationary and non-stationary states.

Table 4.1: Stationary state Action Coverage We record the number of interactions our agent takes

to perform actions in three different scenes. Each scene was experimented with two or more trials with

different random seeds. We stop training when interaction count exceeds 75000 interactions.

#Actions per relation Total # Actions Action Coverage Interaction Count

3-Object Scene 27 162 1.0 770.38± 187.914

75 450 1.0 2505.6± 401.968

6-Object Scene 27 810 1.0 7311.0± 2181.74

75 2250 1.0 25958.67± 3609.25

8-Object Scene 27 1512 1.0 22836± 2225.0

75 4200 0.8± 0.107 75000
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Chapter 5. Experiments

In this section, we provide results of our experiments in stationary and non-stationary state problems.

5.0.1 Stationary State (Multi-armed Bandit Problem)

In stationary state, or multi-arm bandit problem, after an agent takes an action, we reset every

object’s position back to its original state. The initial states of objects in different scenes are shown in

Figure 4.1. We test with two different action sets and compare the number of interactions it takes for

an agent to try out all actions. We also test generalizability of our agent’s prediction model to multiple

objects.

Action Coverage As shown in Table 4.1, our agent successfully tries all available actions in

3-object and 6-object scenes for both set of actions. Despite the huge number of actions, our agent is able

to intrinsically motivate itself to perform hundreds and thousands of actions. While there is no clear way

to tell our method is the fastest, we are not aware of any previous work that measures the number of

actions covered by an agent, since conventional reinforcement learning problems do not require an agent

to perform all actions. The fastest way to cover all actions is to keep track of all actions and their Q

values in a table; however, this method has scalability issues and cannot be extended to non-stationary

state problems.

As number of actions increases, it, however, takes longer for our agent to cover all actions. In fact,

for 8-object scene, it fails to achieve full action coverage when presented with 75 different actions per

object. One possible explanation of this is the replay buffer. Using a sampling batch size of 1024, the

actor replay buffer uniformly samples 1024 past experiences for all objects. For 8-object scene with

75 actions, each object has 525 unique actions per all pairs of objects. Compared to other scenes, the

probability of getting 525 unique action experiences from 1024 samples is a lot lower, especially when

the actor replay buffer has uneven distribution of actions. To make matters worse, our prediction replay

buffer is limited in size. In our experiment, the prediction buffer of size 2.5e + 6 saturates before our

agent can perform all actions.. It is apparent that our approach cannot scale to scenes with more objects

and actions with the current implementation of both actor and prediction replay buffers. We leave the

improvement of replay buffers to future work.

Prediction Error To test whether our agent’s intuitive physics model predicts object position and

velocity correctly, we test it by computing the L2-norm between predicted and the actual position and

velocity of object after one frame. Our agent’s prediction model errors are plotted in Figure 5.2. For all

scenes, the position errors of one frame prediction are within 0.002m and the velocity errors are within

0.15m/s. These errors quite small, given the fact that the objects in our scene can change its position

from 0 to 0.18465m per frame and velocity change ranges from 0 to 6.87219m/s per frame.

Our prediction error could be reduced further with other network architectures. In fact, there are

many works that are trying to develop better network models for intuitive physics learning. However, the

aim of our work is to show that the loss value from any intuitive physics network can be converted into

an intrinsic reward to motivate an agent to explore different actions. Observations from different actions

result in a diverse set of training data, which can make the intuitive physics network more general and

robust.
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Figure 5.1: Action coverage results after 3 or more runs with different random seeds. (From left to right)

Action coverage of our agent in 3-object, 6-object, and 8-object scene.

In generalization tasks, we allow our agent to apply forces on multiple objects and see if it can predict

the outcome after one frame. We generate 100 experiments by randomly selecting focus objects and actions.

We let our agent to predict the next position and velocity of all objects in the scene, and we measure

the mean error of all predictions. Video of our results can be found in https://youtu.be/-18o6K5D4pQ.

The results show that our agent’s prediction network accurately predicts the physical behavior of colliding

and non-colliding objects. Moreover, our agent’s intuition model is able to generalize to multiple moving

objects very well even though the agent was only trained with an observation of a pair of objects (i.e.focus

and relation object). Our qualitative results show that the agent’s prediction model is able to predict that

collision causes a moving object to either deflect or stop, and causes idle objects to move. Additionally,

despite not knowing about gravitational forces, it learns that objects fall when they are above a surface.

While there are other intuitive physics networks trained with supervised learning that can yield

a higher accuracy, it is difficult for us to compare our results with theirs. The biggest reason is that

supervised learning is provided with a well-defined set of training data a priori. In our work and

reinforcement learning in general, data are collected by an agent, and those data are not identical to

that of supervised learning, making it difficult to compare two different approaches in a fair setting.

Additionally, the training process differs: supervised learning takes epoch based learning where it iterates

over the same dataset multiple times until the network reaches a certain error rate on a validation set. In

deep reinforcement learning, a small subset of data is randomly sampled from the replay buffer and is

used to train the network on the fly.

5.0.2 Non-stationary State (Reinforcement Learning)

We extend our prediction model with deep Q network to non-stationary state problems where we

do not reset the objects unless they go out of bounds. To increase the chance of collision, we provide

9 actions only on the xy place (i.e. x, y ∈ {−1, 0, 1}). We arbitrarily set the bounds to be 3m × 3m

square. Since there are no walls to stop objects from going out of bounds, objects have a low probability

of colliding with another object. In order to make them collide on every interaction, we generated 51

test cases in which every interaction causes a collision among objects. Our agent’s prediction model then

predicts the object’s location after varying number of frames (i.e. 1,2,4,10,15,30,45 frames).

Prediction Error Prediction network’s errors are plotted in Figure 6.1. We see that when our

agent predicts object locations after 1, 2, and 4 frames, the error is negligibly small. However, our
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agent is uncertain when predicting object location after 10 or more frames. This is because the error

from each frame accumulates and causes objects to veer away from the actual path. Our qualitative

results of non-stationary problem can be found in https://youtu.be/OpxBMYqeq70. Similar to stationary

state results, our agent’s prediction network accurately predicts an object’s general direction and their

movements, despite having infinitely many states. The agent’s prediction network is able to predict

whether an object will stop or deflect from its original trajectory when colliding with another object.

Even if the agent’s prediction network fails to predict the correct position of a moving object, it still

makes a physically plausible prediction.

Limitation We would like to point out that although our agent performed thousands of interactions,

our agent still fails to learn that objects do not go through one another, as seen in our qualitative results.

This is very noticeable when objects are moving fast. We conjecture that once our agent makes a wrong

prediction, the predicted object overlaps with another object, causing our agent fails to predict subsequent

positions and velocities. One plausible explanation is that it has never seen such objects overlap in its

training data, hence fails to predict it accurately.

Figure 5.2: Mean position and velocity prediction errors after 1 frame with different number of focus

objects in 3-object, 6-object, and 8-object scene.
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Chapter 6. Related Works and

Contributions of this Dissertation

Figure 6.1: We test our intuition model in the non-stationary problem. Fewer prediction steps incur

almost no error, while higher prediction steps, i.e. more than 4 frames, incur a high loss due to cumulative

errors.

6.0.1 Deep Reinforcement Learning

Recent advances in deep reinforcement learning have achieved super-human performances on various

ATARI games [Mnih et al.(2015)Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller,

and etc] and robotic control problems [Schulman et al.(2015)Schulman, Levine, Moritz, Jordan, and

Abbeel, Schulman et al.(2017)Schulman, Wolski, Dhariwal, Radford, and Klimov, Silver et al.(2014)Silver,

Lever, Heess, Degris, Wierstra, and Riedmiller]. While these approaches have achieved state-of-the-art

performances on many tasks, they are often not easily transferable to other tasks because these networks

are trained on individual tasks.

As opposed to model-free methods, model-based approaches create a model of an environment, which

equips agents with the ability to predict and plan. Dyna-Q, proposed by [Sutton(1990)], integrated

model-free with model-based learning so an agent can construct a model of an environment, react to the

current state and plan actions by predicting future states. More recent work in model based reinforcement

learning [Oh et al.(2017)Oh, Singh, and Lee] proposed a value prediction network that learns a dynamic

environment and predicts future values of abstract states conditioned on options.

6.0.2 Intrinsic Motivation and Curiosity

Early work by [Berlyne(1966)] showed that both animals and humans spend a substantial amount

of time exploring that is driven by curiosity. Furthermore, Berlyne’s theory suggests that curiosity, or
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intrinsic motivation [Barto et al.(2004)Barto, Singh, and Chentanez, Chentanez et al.(2005)Chentanez,

Barto, and Singh], is triggered by novelty and complexity.

The idea of integrating curiosity, and its counterpart boredom, with reinforcement learning was

suggested by [Schmidhuber(1991)], and showed that intrinsic reward can be modeled to motivate

agents to explore areas with high prediction errors [Schmidhuber(2010)]. Using deep learning, [Pathak

et al.(2017)Pathak, Agrawal, Efros, and Darrell] proposed an intrinsic curiosity module that outputs a

prediction error in the state feature space, which is used as an intrinsic reward signal. Our work adopted

this approach of using the prediction error for our intrinsic reward.

6.0.3 Intuitive Physics

At an early age, human infants are equipped with a “starter pack” [Lake et al.(2017)Lake, Ullman,

Tenenbaum, and Gershman], which includes a sense of intuitive physics. For instance, when observing

a moving ball, our intuitive physics can sense how fast the ball is going and how far the ball will go

before it comes to a complete halt. This intuitive physics is present as a prior model and accelerates

future learning processes. Works done by [Battaglia et al.(2013)Battaglia, Hamrick, and Tenenbaum] and

[Hamrick(2011)] show that humans have an internal physics model that can predict and influence their

decision making process.

Recent works have focused on using deep learning to model the human’s intuitive physics model.

[Lerer et al.(2016)Lerer, Gross, and Fergus] used a 3D game engine to simulate towers of wooden blocks

and introduced a novel network, PhysNet, that can predict whether a block tower will collapse and

its trajectories. [Fragkiadaki et al.(2015)Fragkiadaki, Agrawal, Levine, and Malik] proposed a visual

predictive model of physics where an agent is able to predict ball trajectories in billiards. Another work by

[Chang et al.(2016)Chang, Ullman, Torralba, and Tenenbaum] proposed a neural physics engine that uses

an object based representation to predict the state of the focus object given a physical scenario. [Battaglia

et al.(2016)Battaglia, Pascanu, Lai, Rezende, and kavukcuoglu] presented an interaction network that

combined structured models, simulation, and deep learning to extract relations among objects and predict

complex physical systems. We extend the previous works by integrating deep reinforcement learning that

intrinsically motivates our agent to improve its physics model.
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Chapter 7. Concluding Remarks

In this paper, we have proposed a graphical physics network integrated with deep Q learning and

a simple, yet effective reward normalization method that motivates agents to explore actions that can

improve its model. We have demonstrated that our agent does indeed explore most of its actions, and our

graphical physics network is able to efficiently predict object’s position and velocity. We have experimented

our network on both stationary and non-stationary problems in various scenes with spherical objects

with varying masses and radii. Our hope is that these pre-trained intuition models can later be used as a

prior knowledge for other goal oriented tasks such as ATARI games or video prediction.
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