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초 록

기하 정보나 광선 경로 정보와 같은 렌더링 보조 피처들은 몬테카를로 노이즈 제거에 상당한 성능 향상을

가져다주었다. 그러나 최근 기법들은 노이즈 제거 딥러닝 모델의 학습 과정에서 보조 피처 활용에 대한

정보를 주지 않아 보조 피처들을 효과적으로 활용하기 어렵다. 이러한 문제를 해결하기 위해 본 연구는

픽셀 단위로 보조 피처 활용에 대한 가이던스를 제공하는 노이즈 제거 기법을 소개한다. 먼저 기하 정보와

광선 경로 정보를 서로 다른 노이즈 제거 모델 학습에 각각 활용한다. 그런 다음 앙상블 네트워크를 통해 각

픽셀당 앙상블 가중치 맵을 얻는다. 이 맵은 각 픽셀을 복원하는 대에 어떤 보조 피처를 우세하게 활용해야

하는지를 나타내는 가이던스로서 역할을 한다. 해당 가중치 맵을 통해서 두 개의 노이즈 제거 모델의 결과를

앙상블하여 최종 노이즈 제거 결과를 얻는다. 이에 더해 픽셀 단위 가이던스를 노이즈 제거 모델에 전파하기

위해 노이즈 제거 모델과 앙상블 모델을 동시에 학습하여, 기하 정보 혹은 광선 경로 정보가 상대적으로

중요한 영역에 노이즈 제거 모델이 집중하도록 한다. 기하 정보와 광선 경로 정보를 동시에 활용하는 기존

노이즈 제거 모델들에 제안하는 프레임워크를 적용하여 수치와 시각적 성능이 개선됨을 확인하였다.

핵 심 낱 말 몬테카를로 광선추적법, 심층 신경망, 앙상블 학습, 이미지 노이즈 제거

Abstract

The utilization of auxiliary features such as geometric buffers (G-buffers) and path descriptors (P-buffers)

has greatly enhanced the denoising process in Monte Carlo (MC) techniques. However, recent methods

let the neural network to implicitly learn how to exploit these auxiliary features, which may result

in suboptimal utilization of each type. To address this issue, we propose a denoising framework that

incorporates explicit pixel-wise guidance for leveraging auxiliary features. Our approach involves training

two separate denoisers, each trained with a specific auxiliary feature (G-buffers or P-buffers). We then

employ an ensembling network to generate per-pixel ensembling weight maps, which serve as guidance

for determining the dominant auxiliary feature for reconstructing each individual pixel. These weight

maps are used to combine the outputs of the two denoisers. Additionally, we propagate the pixel-wise

guidance to the denoisers by jointly training them with the ensembling network, encouraging the denoisers

to focus on regions where G-buffers or P-buffers are more relevant for denoising. Our experimental results

demonstrate significant improvement in denoising performance compared to a baseline model that utilizes

both G-buffers and P-buffers.

Keywords Monte Carlo ray tracing, deep neural network, ensemble learning, image denoising
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Chapter 1. Introduction
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Figure 1.1: We propose a novel guidance framework that generates pixel-wise guidance for exploiting

auxiliary features in MC denoising. Our pixel-wise guidance effectively utilizes two types of auxiliary

features, geometric features (G-buffers) and path features (P-buffers). Our framework (e) effectively

removes noise on geometric details (yellow arrows) and complex lighting effects (red arrows) compared

to previous works using both auxiliary features (d) via simple concatenation and using a single type of

auxiliary features (b, c).

Monte Carlo (MC) rendering [15] is widely used in production rendering for generating photorealistic

images. The power of MC rendering comes from its unbiased nature. The unbiasedness allows MC

rendering to provide good approximate for global illumination. On the other hand, the stochasticity

of MC rendering makes the approximation converge slowly, demanding MC rendering use thousands of

samples per pixel to achieve a clean image. Thorough research has been done to accelerate MC rendering

by using a few samples per pixel for generating clean, photorealistic images.

Among various strategies, MC denoising techniques [20] are widely studied for their effectiveness

and simplicity. The goal of these techniques is to accelerate the rendering process by removing the

noise from the noisy image generated from MC rendering using few samples per pixel (i.e., 2-64 spp)

rather than shooting thousands of samples. These post-processing approaches are easy to deploy on

renderers, requiring minimal implementation to acquire auxiliary features, which serve as valuable cues

for denoising.

Geometric features (i.e., G-buffers) are common choice as auxiliary features for MC denoising. They

usually consist of albedo (texture), normal, and depth of the first bounce of the light sample, which are

aggregated into image space [26]. G-buffers provide strong geometric constraints for denoising, showing

robust performance in reconstructing geometric details and diffuse reflections. However, they often fail

to capture information for complex lighting effects such as multi-bounce reflections and caustics.

Recent works propose path features (i.e., P-buffers) to deal with noise from complex lighting ef-

fects [10][19][6]. P-buffers contain optical and material information on each bounce of light samples,

1



such as sampling probabilities and light directions. Furthermore, Cho et al. [6] introduce a manifold-

learning technique that can embed high-dimensional P-buffers in low-dimensional space based on the

similarity in radiances. The proposed manifold-learning increases the utilization of P-buffers on various

learning-based denoisers [2][10][21].

However, previous works using G-buffers and P-buffers [10][6] simply combine both auxiliary features

as an input to the denoiser. A simple concatenation of auxiliary features makes it challenging for the

denoising neural network to capture the different characteristics of these auxiliary features. Consequently,

the denoiser struggles to effectively utilize various types of auxiliary features to remove noises from various

light transport phenomena, as in the cases of Figure. 1.1.

To address this issue, we propose a novel pixel-wise guidance framework for MC denoising. Our

framework provides guidance on which auxiliary features (e.g., G-buffers or P-buffers) should be more

effectively exploited in a pixel-wise manner. We first consider two denoising networks, each using only

a single type of auxiliary features. We design a deep learning-based ensembling network that estimates

pixel-wise ensembling weight map, which is used to ensemble the two denoised results from the denoisers.

Additionally, we train the ensembling network jointly with the denoisers to provide pixel-wise guidance

to the denoisers. Our joint-training guides the denoisers to focus on denoising regions where the weight

maps assign more emphasis.

We build our framework based on two existing denoisers, KPCN [2] and AdvMCD [30], and show

that our work can benefit various learning-based denoisers. We also compare our work with the existing

optimization-based ensembling approach for MC denoising [34]. Finally, we present an analysis of our

ensembling framework with extensive studies.
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Chapter 2. Related Works

2.1 MC Denoising and Auxiliary Features

The goal of MC denoising is to accelerate the rendering process by removing the noise from the

rendered result when using few samples per pixel (e.g., 2-64 spp). Such post-processing is faster than

using a sufficient number of samples to get the clean image. Traditional MC denoising methods estimate

robust denoising kernels to remove the noise. Some works deploy existing denoising kernels such as non-

local means [25][26], A-Trous filter [7], and bilateral filters [17]. However, unlike general image denoising,

these works use auxiliary features to create a robust denoising kernel that can be easily obtained during

rendering. The common auxiliary features are geometric features (i.e., G-buffers), which contains 3D

geometric information (e.g., albedo, normal, depth) of the first bounce of samples in image-space [20].

They provide strong geometric constraints when estimating denoising kernels.

Recent works apply machine learning for MC denoising. These works train a neural network to

estimate the denoised pixel values or denoising kernels from a large training data of various scenes.

Pioneering work from Kalantari et al. [16] train multi-layer perceptrons(MLPs) to estimate parameters

for bilateral filters. Bako et al. [2] have proposed a kernel-predicting convolutional network (KPCN)

that estimates a denoising kernel directly. Xu et al. [30] propose an adversarial training approach that

helps the denoising neural network preserve high-frequency details. Finally, Yu et al. [32] suggest a self-

attention mechanism guided by auxiliary features to capture relationships between features effectively.

Overall, learning-based approaches have shown strength in extracting useful features from input noisy

image and G-buffers for denoising.

However, G-buffers suffer from reconstructing complex lighting effects because they only contain

geometric information on the first bounce. Recent works overcome the problem by introducing new

auxiliary features called path features or P-buffers [10][19][6]. P-buffers include radiometric information

of each bounce of light samples which are beneficial for dealing with noise from complex lighting effects

such as multi-bounce reflections and caustics. Meanwhile, other kinds of auxiliary features are used for

volume rendering [33] or hair rendering [24] depending on their purposes of rendering.

While a wide variety of auxiliary features can be obtained and used for denoising, exploiting high

dimensional auxiliary features is still an ill-posed problem. Cho et al. [6] argue that high dimensionality

of P-buffers makes utilization of P-buffers ineffective. They propose a path manifold module that embeds

P-buffers to low-dimensional space before feeding to the denoising network. On the other hand, Zhang

et al. [33] show that using a subset of effective auxiliary features gives better denoising performance than

using a complete set of auxiliary features. They suggest an automatic feature selection that selects a

subset of effective features that shows the best performance and efficiency.

Our framework also addresses the high-dimensionality problem when using both G-buffers and

P-buffers. We use two denoising networks, each dealing with a single type of auxiliary features, and

ensembles the results of the two denoising networks.
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2.2 Ensembling for MC Denoising

Recent works argue that various MC denoising methods have systematic biases due to hand-crafted

designs, choice of auxiliary features, or training data [34][1]. To solve the problem, they suggest a post-

correction method for denoising that ensembles the rendered and denoised results. Back et al. [1] propose

a deep-learning method that estimates ensembling kernels to ensemble the noisy and denoised results.

Future works enhance the deep learning-based ensembling using error estimation techniques [9][13] for

robust ensembling between noisy and denoised results. On the contrary, Zheng et al. [34] propose

an optimization-based ensembling method, ensembling denoised results from multiple denoisers. Their

method optimizes pixel-wise ensembling weight maps to reduce the estimated error of the ensembled

result.

These works are built to post-process the results of existing denoisers and thus do not modify the

denoisers. Our framework, on the other hand, shows the benefit of modifying the denoisers during ensem-

bling by jointly training the denoisers with our ensembling network to provide an enhanced ensembled

result. We provide ablation studies on test performance based on the training strategies (Chapter. 5.4)

and comparison with previous ensembling method [34] (Chapter. 5.3) to show the effectiveness of our

deep learning-based ensembling and joint-training.

4



Chapter 3. Method
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Figure 3.1: Visualization of our denoising framework. We first denoise the noisy input with only a

single type of auxiliary features (G-buffers fG or P-buffers fP ) using independent denoising networks,

DG and DP . Then the ensembling network estimates the ensembling weight maps from the two denoised

results (IG, IP ) and the auxiliary features (fG, fP ). The ensembling weight maps further ensemble

the two denoised results as the final ensembled output IE . The path manifold module that generates

low-dimensional P-buffers is omitted in this figure for simplicity. Please refer to the details of the

path-manifold module in Chapter 8.1.3.

Our novel guidance framework provides explicit pixel-wise guidance for utilizing auxiliary features in MC

denoising. We demonstrate the details of our framework and the training strategies in this section.

3.1 Denoising with G- and P-buffers

We set two denoisers, DG and DP , each denoising with only a single type of auxiliary features,

G-buffers and P-buffers. We separate the denoising process to avoid the high-dimensionality problem of

auxiliary features and to let each neural network learn different characteristics of G-buffers and P-buffers

separately.

The following equations can summarize this stage:

IG = DG(θG; Ĩ , fG), (3.1)

IP = DP (θP ; Ĩ , fP ), (3.2)

where Ĩ is the input noisy image, fG and fP are G-buffers and P-buffers, respectively, and IG and IP

are the denoised images of the corresponding denoising networks. θG and θP are parameters of the

5



denoising networks DG and DP , respectively. The denoising networks share the same structure with

a simple modification in the input channel. We change the input channel of the first layer to fit the

channel dimension of the G-buffers and P-buffers. We can deploy any denoising network architecture

for DG and DP , where we choose KPCN [2] and AdvMCD [30] for this work. We provide details of the

configuration and channel number of G-buffers and P-buffers in Appendix 8.1. Please refer to the details

of the network architectures from the works above.

3.2 Deep-learning based Pixel-wise Ensembling

In this stage, we ensemble the denoised result IG and IP of the denoisers DG and DP in a per-pixel

manner. To do so, we design an ensembling network, E , that estimates pixel-wise weight maps for ensem-

bling from the denoised results (IG, IP ) and the auxiliary features (fG, fP ). We design the architecture

of our ensembling network similar to KPCN [2], where we use only eight 5x5 convolutional layers with

fifty hidden channels, each layer followed by a ReLU activation function. The last convolution layer has

two channels followed by a sigmoid activation to estimate the weight maps with values normalized to

[0, 1]H×W , resembling the soft masks. We normalize the weightmaps (i.e., WG+WP = 1H×W ) for stable

ensembled results during training and testing [34].

In summary, estimating pixel-wise ensembling weight maps {WG;WP } can be summarized as below:

{WG;WP } = E(θE ; IG, IP , fG, fP ), (3.3)

where θE is the parameter of our ensembling network E .

Then we ensemble the two denoised results after applying their respective weight maps as shown

below:

IE = IG ⊗WG + IP ⊗WP , (3.4)

where ⊗ is the Hadamard product. Thus, IE is the final product of our guidance framework.

Our ensembling weight maps represents pixel-wise importance of auxiliary features when ensembling.

Intuitively, given the denoised results IG and IP , our weight maps should give more weight to the result

that shows better reconstruction to produce an enhanced ensembled result. This reflects that the regions

where our weight maps highlight (i.e., assign more weights) are regions where the corresponding auxiliary

features are more useful for reconstruction than another type of auxilary features. We further analyze

the ensembling weight maps in Chapter 5.2

3.3 Jointly Training for Pixel-wise Guidance

To make further use of our ensembling weight maps for enhanced denoising, we jointly train the

denoising networks and the ensembling network to provide pixel-wise guidance to the denoising networks.

In this section, we describe the details and the effects of our joint-training.

3.3.1 Pretraining Denoisers

Training our whole framework from scratch would make our ensembling network deal with poorly

denoised images from the denoising networks that are not fully trained. This may guide our ensembling

network to estimate suboptimal weight maps for ensembling. To circumvent the problem, we pretrain

our two denoising networks before jointly training them with our ensembling network. We describe

6



the detailed pretraining strategy in Chapter. 4.2.2, where strategies differ by the baseline we choose for

denoising networks. We also show empirical results on how our pretraining enhances the performance of

our framework in Chapter. 5.4.

3.3.2 Joint-Training

We jointly train the denoising networks DG, DP , and the ensembling network E to minimize the

reconstruction loss of the final ensembled result IR. As mentioned in the previous chapter, our ensembling

network learns to assign higher weights to the denoised result that shows better quality in a pixel-wise

manner.

However, even though we pretrain the denoising networks, jointly training our ensembling network

and the denoising networks may unintentionally entangle the objectives of these networks. Even though

the final ensembled result is plausible, the denoising networks may not properly denoise the noisy input,

and the ensembling network may not estimate proper ensembling weight maps. To prevent the entangle-

ment, we remove the gradients on IG and IP when passing them to the ensembling network as inputs [5].

By removing the gradient, the denoising networks only gets training signals from the ensembling process

(see the red line in Figure. 3.1). This disentangles the objectives of our networks and get legitimate and

interpretable ensembling weight maps and denoised results.

With the proper gradient removal, jointly training our denoising networks with an ensembling net-

work enhances the denoisers to focus on regions where their corresponding auxiliary features are impor-

tant. The ensembling weight maps WG and WP mask the gradients that flow to their corresponding

denoising networks DG and DP , similar to soft-masking.

The derivation of the gradient masking scheme is when using `1 loss for reconstruction is shown

below:
∂

∂θG

∣∣∣IE − Î∣∣∣ =
∂

∂θG

∣∣∣(IG ⊗WG + IP ⊗WP )− Î
∣∣∣ ∝WG ⊗ sgn(IE − Î)⊗ ∂IG

∂θG
, (3.5)

∂

∂θP

∣∣∣IE − Î∣∣∣ =
∂

∂θP

∣∣∣(IG ⊗WG + IP ⊗WP )− Î
∣∣∣ ∝WP ⊗ sgn(IE − Î)⊗ ∂IP

∂θP
, (3.6)

where sgn(·) is a sign function. The aforementioned gradient removal zeros the following gradients:
∂WP

∂θG
= 0 and ∂WG

∂θP
= 0. Note that the gradient masking scheme works similarly for different reconstruc-

tion loss functions such as MSE, relativeMSE, relativeL1, and SMAPE [27].

The masked gradients enhance the denoising networks DG and DP by providing guidance on re-

gions where each network should focus when denoising. Weight maps WG and WP contain pixel-wise

information on which auxiliary features more successfully reconstruct the pixel radiance. As the weight

maps mask the gradients, they leave training signals on regions where G-buffers or P-buffers are im-

portant. For instance, WG highlights pixels where G-buffers are vital for denoising with high weights.

Thus the denoiser DG will get training signals based on those highlighted pixels during joint training.

Similarly, the denoiser DP will get training signals on pixels where P-buffers are vital for denoising based

on the highlighted pixels of WP . Therefore, our joint-training strategy provides pixel-wise guidance to

the denoising networks on which region they should focus for training. Chapter. 5.2 provides empirical

evidence with visualization of how our joint-training enhances the denoisers.
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Chapter 4. Experiment Setups

In this section, we discuss details of our experiment settings including dataset configuration, evaluation

, and training details for our framework and baseline denoisers. All experiments are done on NVIDIA

RTX 3090 GPU for KPCN [2] models and NVIDIA RTX 8000 GPU for AdvMCD [30]-based models.

4.1 Datasets and Evaluation

4.1.1 Dataset Generation

We generate our own dataset using 18 scenes gathered from publicly available resources [3] and

Blend Swap, and render them with our OptiX-based renderer [22] for fast generation. For training

and validation dataset, we randomize the camera (e.g., position, up direction, look direction), material

parameters (e.g., BRDF type, albedo, roughness, index of refraction), and lighting (e.g., Environment

map, light source) to train with diverse light transport. Note that we fix parameters that are crucial

for physical correctness, such as refraction indices and specular reflectance. We render 25 randomized

shots per scene with a resolution of 1280× 1280, and a single shot per scene with the same resolution for

validation. 256 patches with a resolution of 128× 128 are randomly sampled for training and validation.

Noisy images for training and validation are rendered with 2 to 8 spp in order to train our denoiser to

deal with spp-dependent variance in noisy radiances and P-buffers. The reference images are rendered

with 8000 spp. On the other hand, we render test sets with 12 scenes not used for training and validation.

Note that we do not apply randomization and random patch sampling for test sets for evaluation. Noisy

images for the test set are rendered with 2, 4, 8, 16, 32, and 64 spp for concise evaluation on various

noise levels. The reference images for the test set are rendered with 16000 spp or 32000 spp, depending

on the convergence of the scene.

We store noisy radiance, G-buffers, and P-buffers for each rendered shot of our denoising. We

follow the descriptions of the previous denoising works using G-buffers and P-buffers for MC denois-

ing [2][30][10][6]. We deliver specific configuration of G-buffers and P-buffers in Appendix 8.1

4.1.2 Evaluation Metrics

We apply gamma tone mapping [30] to the radiances for numerical and perceptual comparison on

low dynamic range (LDR). To evaluate the performance on test sets, we use two error metrics: relative

mean square error (relMSE) [25] and structural dissimilarity (1−SSIM) [28]. We also use relMSE to

evaluate the performance on the validation set. However, the error rate varies depending on the scene.

To compare numerical error across the scenes, we report the errors normalized by the error of 2-spp noisy

inputs for each scene and then compute the average among the scenes [2][27][6].
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Figure 4.1: Examples of clean shots from our training set. We randomize various scene parameters to

generate various light transport phenomena for training.

4.2 Baseline and Training Details

4.2.1 Baseline

We choose two learning-based MC denoising models, KPCN [2] and AdvMCD [30], to show that

our method benefits various denoising models. To embed the path descriptors as P-buffers, we use the

path-manifold module from Cho et al. [6].

4.2.2 Pretraining Denoisers

For KPCN using G-buffers, we use `1 loss between the reference Î and the denoised radiance I as

a reconstruction loss to train the diffuse and specular branches of KPCN with a learning rate of 1e-4.

Then, we finetune both branches to minimize the `1 loss between the reference and the final denoised

radiance (diffuse and specular combined) with a learning rate of 1e-6. Both training and finetuning are

done until the validation loss stops decreasing.

For AdvMCD using G-buffers, we use the generator of AdvMCD as the baseline denoiser for DG

and DP . Denoiser DG and DP have their own critic networks, which is required for adversarial training.

We pretrain the denoisers with both L1 reconstruction loss and adversarial loss and gradient-penalty loss

weighted with parameters wadv = 0.005 and wgp = 10.0. The learning rate is initially set to 1e-4, where

we halve the learning rate every two epochs. We train the denoisers up to 8 epochs. Please check the

detailed architecture of the denoising network, critic networks, and losses of AdvMCD in Xu et al. [30].

When using P-buffers as auxiliary features for the denoisers, we add a path-manifold module and

jointly train the denoiser and the path-manifold module with the reconstruction loss and the path

disentangling loss [6]. The two path-manifold modules are added to each of the diffuse and specular

branches to provide embedded P-buffers for each branch. The final loss term for training KPCN using

P-buffers is as below:

L(I, fP , Î) = `1(I, Î) + wpathLpath(fp, I), (4.1)

where wpath is the balancing weight applied for path disentangling loss Lpath(fp, I) [6]. Similariy, the
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final loss term for training AdvMCD using P-buffers is as below:

L(I, fP , Î) = `1(I, Î) + wadvLadv(I, Î) + wgpLgp(I) + wpathLpath(fp, I). (4.2)

We use the same training objective of Eq. 4.1 to train the denoisers using G-buffers and P-buffers, where

these buffers are concatenated and fed to denoiser.

All models use ADAM optimizer [18], and we use a P-buffers size of 12 and wpath of 0.1 which have

shown the best performance for our work [6].

4.2.3 Applying Our Framework with Joint-training

We construct two of our denoising frameworks for each diffuse and specular branches [2][30], and

train each framework to minimize the `1 loss of the ensembled result. Note that we do not use the

critic network, adversarial loss, and gradient-penalty loss for joint training when using AdvMCD as a

baseline. We use a learning rate of 10−5 to train the ensembling network E while we use a learning rate

of 10−6 to train the pretrained denoisers and the path manifold module. We train our framework until

the validation loss stops decreasing to prevent overfitting.

Our implementation is based on a public code of baseline works, which are based on PyTorch [23].

All convolutional layers of our model and baselines are initialized using the Xavier method [11].
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Chapter 5. Results and Discussions

In this section, we first deliver the overall performance and analysis of our denoising framework by

comparing it with the baseline denoisers KPCN [2] and AdvMCD [30]. We then provide analysis on

ensembling weight maps and ablation studies on our framework. Moreover, we show comparison of our

work with an optimization-based ensembling method [34]. Lastly, we discuss the computational cost of

our work with additional analysis.

5.1 Comparison with Baseline Models
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~13.8s
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Figure 5.1: Numerical comparison of our guidance framework with baseline (KPCN [2]). Our model

outperforms the baseline models using various combinations of features in denoising performance (left

plot) and in efficiency (right plot).

Time cost (secs) v.s. spp 2 4 8 16 32 64

Ensembling Network E & Multiplication (for each branch) 0.15 0.15 0.15 0.15 0.15 0.15

DG (i.e., G-buffers) 1.3 1.3 1.3 1.3 1.3 1.3

DP (i.e., P-buffers & Both buffers w/o Guidance) 2.1 2.3 2.7 3.4 4.9 7.9

Both buffers w/ Guidance (Ours) 3.7 3.9 4.3 5.0 6.5 9.5

Table 5.1: Runtime cost breakdown of our framework with KPCN baseline. Our framework takes

more time to process the same inputs due to requiring inferences of two denoising networks and our

ensembling method. Note that our framework ensembles results for each diffuse and specular radiance,

requiring two ensembling processes.

We first report the numerical comparison of our guidance framework and the baseline models based

on KPCN [2]. The left plot of Figure 5.1 shows denoising performance on various noise levels (2-64

spp). Our framework of pixel-wise guidance outperforms the baseline models using a combination of

G-buffers and P-buffers throughout all noise levels. The right plot shows denoising performance with

respect to total rendering time. This plot shows that our guidance framework also outperforms the

time-performance efficiency, even though our framework requires additional computation overhead for

inferencing two denoising networks and ensembling (see Table 5.1 for specific analysis). Such overhead

can be seen in the right plot of Figure 5.1, where the solid purple line of our framework is slightly
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shifted to the right compared to the baselines. Nevertheless, for moderate sample counts (i.e., 4-64 spp),

our framework shows improved efficiency. For instance, our framework can reach a similar denoising

performance using half of the total time (6.9 seconds) compared to the baseline model using both buffers

(13.8 seconds).
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Figure 5.2: We compare the numerical results of our denoising framework with the baseline models

(AdvMCD) using different combinations of auxiliary features.

We also provide a numerical comparison of our denoising framework and the baseline models based

on AdvMCD [30]. Our framework also outperforms other baseline models using different combinations

of auxiliary features. However, our model cannot outperform the baseline models regarding efficiency in

low sample counts (e.g., 2-8 spp) due to a large denoising network of AdvMCD. Because AdvMCD has

more parameters than KPCN, running the denoising network takes longer. This increases our model’s

computational cost, which requires two passes of the denoising network before ensembling. Thus, our

framework is more effective when applied to a lightweight denoising network in terms of efficiency. We

provide a more thorough analysis of the computational cost of our work in Chapter. 5.5.

Figure 5.3 shows a visual comparison of the denoised result of our framework and baseline mod-

els based on KPCN. Our framework shows a better reconstruction of geometric details and textures

(e.g., woven basket and pasta) than the baseline models (see first and second row). Our framework also

shows enhanced results on reconstructing complex lighting effects like reflected details (e.g., reflection

on the glossy floor and glass) compared to the baseline model (see third and fourth row). Especially, the

refracted pipe of the hookah scene on the fourth row is hardly reconstructed when using both buffers

without guidance, while it is fairly reconstructed by baseline using only P-buffers. Our framework en-

hances the reconstruction of the refracted pipe with visible edges, showing less numerical error on the

scene. Thus, our work can effectively utilize both G-buffers and P-buffers for denoising.

5.2 Analysis on Pixel-wise Guidance for Utilizing Auxiliary Fea-

tures

We analyze how our pixel-wise guidance framework and joint-training strategy combine the advan-

tages of G-buffers and P-buffers in this section. Figure 5.4 shows the error maps of the denoisers DG

(first row) and DP (second row) before and after joint-training of our framework. The scene on the

first row contains various geometric details, where G-buffers plays more role in denoising. Our weight

map WG highlights regions where geometric information is important such as edges and textures. By

joint training, denoiser using G-buffers, DG, is further trained to denoise with a focus on the highlighted

12



Noisy Input G-buffers Both buffers w/o

Guidance

P-buffers Both buffer w/ 

Guidance (Ours)
Reference

relMSE(↓) 

1-SSIM (↓)

0.0124

0.0220

0.0076

0.0280

0.0078 

0.0208

0.0049 

0.0134

relMSE(↓) 

1-SSIM (↓)

0.2178

0.0240

0.2326

0.0249

0.1919 

0.0219

0.1097 

0.0179

16 spp

relMSE(↓) 

1-SSIM (↓)

0.3448 

0.0279

0.2583 

0.0260

0.1796

0.0233

0.1354 

0.0201

8 spp

2 spp

64 spp

relMSE(↓) 

1-SSIM (↓)

0.0007 

0.0083

0.0006 

0.0035

0.0013

0.0040

0.0004 

0.0026

Figure 5.3: Visual comparison of our denoising framework and baseline models. Our pixel-wise guidance

shows enhanced reconstruction on both geometric details (first and second row) and complex lighting

effects (thrid and fourth row). We further provide the comparison of the diffuse and specular branches

in Appendix 8.2. Best viewed with zoom-in.

regions on the weight map WG, showing less error on those regions than before. A similar phenomenon

happens for denoising using P-buffers, DP . The scene on the second row contains various reflection

details, where P-buffers plays more role. DP is jointly-trained to denoise with a focus on regions where

P-buffers are vital with guidance from the weight map WP . These regions with lower errors are further

ensembled with higher weights, enhancing the final ensembled result.

Further analysis shows that our guidance framework can utilize G-buffers and P-buffers in a com-

plementary manner, resulting in robust denoising on various noise levels (spp). On low sample counts,

P-buffers tend to be noisy because the radiometric values of the light sample depend on whether the

sample reaches the light source or not. On the other hand, G-buffers provide relatively clean features

throughout sample counts because the geometric information on the first bounce of light samples is

relatively stationary. Thus, denoising with P-buffers on low sample counts (i.e., 4 spp) results in noisy

reconstruction compared to denoising with G-buffers, even though the target scene in Figure 5.5 contains

reflected details on the glass door (see first row). On the other hand, the noise in P-buffers reduces when

using an abundant number of samples (i.e., 64 spp), showing improved reconstruction result compared

to denoising with G-buffers (see second row).

13



Error Map of 𝒟𝒟𝐺𝐺
Before Joint-trainingOurs Weight Map

𝑊𝑊𝐺𝐺

G
-b

uf
fe

rs
Error Map of 𝒟𝒟𝐺𝐺

Joint-trained

After 
joint-training

0

11

0

767676

0

Ours 1

P-
bu

ffe
rs

0.4

0

Weight Map
𝑊𝑊𝑃𝑃

After 
joint-training

Error Map of 𝒟𝒟P
Before Joint-training

Error Map of 𝒟𝒟𝑃𝑃
Joint-trained

Figure 5.4: Analysis on our joint-training strategy on denoising networks. Our joint-training reduces

the errors of each denoising network based on the highlighted regions of their corresponding weight maps,

where the highlighted regions represent the importance of G-buffers or P-buffers when denoising.

However, our framework gives more emphasis on better-denoised results for ensembling. Our frame-

work gives more emphasis on the denoised result using G-buffers for low sample counts or on the denoised

result using P-buffers for high sample counts. Thus, in both cases, our framework provides an enhanced

ensembled result.

5.3 Comparison with Optimization-based Ensembling Method

We further compare our work with an optimization-based ensembling approach for MC denoising

(ED) [34] to show the effectiveness of our deep learning-based ensembling framework and our joint-

training strategy. ED ensembles result of multiple denoisers without manipulating the denoising methods.

We prepared a new test dataset applicable to our method and ED, supporting half-buffers techniques

for ED’s optimization. We also modified ED to estimate per-pixel weight maps instead of per-channel

(weights for RGB channels each) for a fair comparison with our work.

Numerical comparison between our guidance framework and ED on Figure. 5.6 shows that our

framework is more powerful and efficient for ensembling. The left plot shows that our guidance frame-

work outperforms ED in all noise levels, showing marked improvement by using more samples per pixel.

Our deep learning-based ensembling with joint-training shows more robust ensembling compared to the

optimization-based method that does not modify the denoisers. In addition, our framework outperforms

ED regarding time-performance efficiency (right plot). ED’s optimization approach requires heavy com-

putation using three radiances (one from full buffers, two from each half-buffers) and auxiliary features

for optimizing ensembling weight maps for every scene. On the other hand, our framework can denoise

with inferences of denoising and ensembling networks, which is computationally efficient compared to

ED.
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Figure 5.5: Comparison of ensembling weight maps obtained for low sample counts (4 spp) and high

sample counts (64 spp). The quality of IP depends on the noise in P-buffers, which the noise is severe in

low sample counts. Our ensembling network gives more emphasis on better-reconstructed results between

IG and IP and returns the enhanced ensembled result, reducing the effect of the noise in P-buffers .
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Figure 5.6: Numerical comparison of our guidance framework with optimization-based ensembling

method (ED) [34]. Our framework outperforms ED in both denoising performance (left plot) and ef-

ficiency (right plot), showing the benefit of deep learning-based ensembling and joint-training of the

denoising networks.

5.4 Ablation Studies

In this section, we deliver ablation studies about our training strategy for our framework and in-

put configuration for our ensembling network. We summarize numerical results for ablation studies in

Table. 5.2.

5.4.1 Training Stratagies

We apply various training strategies besides our joint-training for our guidance framework and

compare the denoising performance (see Ablation #1 in Table 5.2). Our joint-training strategy shows the

best test performance on both relMSE and structural dissimilarity metrics. Training only the ensembling

network after pretraining the denoising networks (Fix-N-Train) shows improved test performance than

the baseline denoiser using both buffers but does not outperform our framework jointly trained. This

reflects the effectiveness of our joint-training strategy that enhances the denoisers based on the ensembling

weight maps. In addition, training all networks of our framework from scratch (Full-N-Full) shows worse
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Ablation #1 Training Strategies for Our Denoising Framework

Method Description relMSE(↓) 1−SSIM(↓)
Baseline Baseline denoiser using both buffers 0.10529 0.05151

Full-N-Full Train all models from scratch 0.11245 0.04957

Fix-N-Train Fix pretrained denoisers & Train ensembling model 0.09652 0.04699

Joint-training (Ours) Train pretrained denoisers & ensembling model 0.07983 0.04411

Ablation #2 Input Configuration for Our Ensembling Network

Input Configuration relMSE(↓) 1−SSIM(↓)
Denoised radiances only (IG, IP ) 0.10520 0.04846

+ G-buffers (fG), P-buffers (fp) (Ours) 0.07983 0.04411

Table 5.2: Ablation study on training strategies for our denoising framework (upper table) and input

configuration for our ensembling network E (lower table).

Weight Map 𝑊𝑃
(Radiances Only)

Weight Map 𝑊𝑃
(Radiances & Features)

Weight Map 𝑊𝑃
(Radiances Only)

Weight Map 𝑊𝑃
(Radiances & Features)

Figure 5.7: Visual comparison of weight maps obtained using different input configurations. Weight

maps estimated from radiances and auxiliary features are cleaner than the estimated result with only

radiances. Cleaner weight maps provide more reliable pixel-wise guidance for ensembling and enhancing

denoisers during joint-training.

results than the baseline, showing that the pretraining stage is required for stable and optimal training

(see Chapter. 3.3.1).

5.4.2 Input Configuration

We further test different input configurations for our ensembling network and compare the denoising

performance (see Ablation #2 in Table 5.2). Estimating ensembling weight maps only with denoised

radiances show worse performance than estimating with denoised radiances and auxiliary features. The

visualization of estimated weight maps from Figure. 5.7 shows that weight maps estimated only with

denoised radiances are noisy compared to the ones estimated using both radiances and auxiliary features.

We conjecture that the auxiliary features provide practical guidance on estimating clean weight maps,

which is beneficial for ensembling and enhancing denoisers during joint-training. Such analysis is similar

to Zheng et al. [34], where they applied cross bilateral filters based on G-buffers to remove noises in the

estimated ensembling weight maps for smooth ensembled results.
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Figure 5.8: Numerical comparison of our reduced framework (50%) with our original framework (100%)

and baseline denoiser (KPCN) using both buffers. Our reduced framework shows better efficiency than

our original framework, especially on low sample counts (left plot). However, using few parameters leads

to slightly reduced denoising performance (right plot).

5.5 Analysis on Computational Cost and Performance

In Chapter. 5.1, we have discussed that the performance of our framework comes with an additional

computational cost. The right plot of Figure. 5.1 shows that our framework based on KPCN is less

favorable in dealing with low spp inputs, where our framework takes 1.6 more seconds to process the 2

spp input compared to baseline KPCN using both buffers. Also, the computational overhead increases

as we use a large denoising network (i.e., AdvMCD). The right plot of Figure. 5.2 shows that the

computational overhead of our framework based on AdvMCD to process 2 spp input is increased to 4.9

seconds compared to baseline AdvMCD using both buffers.

To find the correlation between the capacity of our framework and the time-performance efficiency,

we reduced the number of learnable parameters of our framework based on KPCN to 50% by reducing

the hidden layers of the denoising networks and ensembling network to half. Then we compared the

test performance and the time-performance efficiency with our original framework based on KPCN and

baseline KPCN using both buffers.

Our reduced framework shows improved efficiency compared to our original framework, saving 1.3

seconds for processing the same input and requiring only 0.3 seconds to process the input compared to

the baseline denoiser using both buffers (left plot of Figure. 5.8). We conjecture that our framework

may be more beneficial when using lightweight denoising networks for baseline, such as works that target

real-time MC denoising [4][21][8].

On the other hand, using few parameters results in reduced test performance. Our reduced frame-

work shows slightly reduced (3.7-7.8%) denoising performance throughout various noise levels (right

plot of Figure. 5.8). However, still, our reduced framework highly outperforms the baseline denoiser in

denoising performance and efficiency due to our pixel-wise guidance and joint-training.
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Chapter 6. Limitations and Future Works

Despite of additional experiments on Chapter. 5.5, our framework is still slower than using a single

denoising network because our framework involves an ensembling process and inference of two denoising

networks. We have shown that the computational overhead increases as we use a large baseline denoising

network. We have also shown that we can increase efficiency by reducing the capacity of our framework,

but it comes with a tradeoff in denoising performance.

To this end, maintaining the denoising performance while reducing the computation of our framework

will be an interesting future work. Recent works for ensemble learning focus on reducing the computation

and capacity of child models, analogous to the denoisers of our framework, for efficient ensembling. For

instance, Whitaker et al. [29] create multiple randomly pruned child models from a pretrained parent

model and then finetune the child models based on the ensembled result. Similarly, we can prune the

denoisers and reduce the computational cost of denoising while enhancing the final ensembled result for

denoising. Moreover, our framework can provide guidance in utilizing auxiliary features to learning-based

MC denoisers using a single column of a neural network via knowledge distillation [12][31].

Another direction for the future will be expanding our framework to deal with a wide variety of

auxiliary features. There are domain-specific auxiliary features for volume rendering and hair rendering,

where our pixel-wise guidance can be very useful.
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Chapter 7. Conclusion

We have proposed a novel guidance framework that provides pixel-wise guidance of utilizing auxiliary

features to the denoisers. Our guidance is generated as pixel-wise ensembling weight maps that are used

to ensemble the results of two denoisers using G-buffers and P-buffers each. We also applied joint-training

of the ensembling network and the denoisers to propagate the pixel-wise guidance to the denoisers. Our

framework is applicable to various learning-based MC denoisers with slight modification and training.

Despite the additional computational cost, our framework has shown a considerable increase in both

denoising performance and time-performance efficiency. We hope that our guidance can be further

applied to effectively use various auxiliary features for rendering.

This work is an extended version of the published work [14] with additional experiments on baseline

denoiser AdvMCD [30].
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Chapter 8. Appendix

8.1 Contents for G-buffers and P-buffers

8.1.1 G-buffers Configuration for KPCN [2]

We acquire G-buffers following the instructions of Bako et al. [2] as below:

• Albedo of the first non-specular bounce (3), its derivatives of x and y (2×3), and variance (1),

• Normal of the first non-specular bounce (3), its derivatives of x and y (2×3), and variance (1),

• Depth of the first non-specular bounce (1), its derivatives of x and y (2×1), and variance (1).

Results to a total 24 channels per pixel for each diffuse and specular branch of KPCN.

8.1.2 G-buffers Configuration for AdvMCD [30]

We acquire G-buffers following the instructions of Xu et al. [30] as below:

• Albedo of the first non-specular bounce (3),

• Normal of the first non-specular bounce (3),

• Depth of the first non-specular bounce (1).

Results to a total 7 channels per pixel for each diffuse and specular branch of AdvMCD.

8.1.3 Path Descriptor Configuration and Path Manifold Module for P-buffers

We follow the logic and the process of Cho et al. [6] to acquire path descriptors and embedding

them to P-buffers using the path manifold module. Note that our OptiX-based renderer sets maximum

bounce of light sample to k = 5. Therefore the maximum number of vertices of each sample path is 6.

The path descriptors are as below:

• Radiance undivided by the sampling probability per sample (3)

• Photon energy per sample (3)

• Sampling probability per sample (1)

• Attenuation factor of each color channel per vertex (3×6)

• Material-light interaction tag per vertex, i.e., reflection, transmission, diffuse, glossy, specular

(1×6)

• Roughness of BSDF per vertex (1×6)

Results to a total 36 channels for path descriptors. These path descriptors are embedded as P-buffers

via path-manifold module [6] (see Fig. 8.1).
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Figure 8.1: Demonstration of the path-manifold module [6]. The module embeds high-dimensional

path descriptors for each sample into a lower dimensional space. Then it averages the embeddings into a

pixel level to be applied to the pixel-space denoiser (e.g., KPCN). The network is annotated in order of

kernel size(k), number of channels(n) and stride(s) [30]. We add padding to preserve spatial dimension

when needed, and use 0.01 as the slope for LeakyReLU.

8.2 Qualitative Results of Diffuse and Specular Branches
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Figure 8.2: Denoised results of both diffuse and specular branch of our framework and baseline models

on test scenes from Fig. 5.3. Our results demonstrate that our pixel-wise guidance effectively exploits

G-buffers and P-buffers on denoising both diffuse and specular radiances compared to the baseline.
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Mark Meyer, and Jan Novák. Denoising with kernel prediction and asymmetric loss functions.

ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,

2004.

[29] Tim Whitaker and Darrell Whitley. Prune and tune ensembles: Low-cost ensemble learning with

sparse independent subnetworks. arXiv preprint arXiv:2202.11782, 2022.

24



[30] Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang. Adver-

sarial monte carlo denoising with conditioned auxiliary feature modulation. ACM Trans. Graph.,

38(6):224–1, 2019.

[31] Lucas D Young, Fitsum A Reda, Rakesh Ranjan, Jon Morton, Jun Hu, Yazhu Ling, Xiaoyu Xiang,

David Liu, and Vikas Chandra. Feature-align network with knowledge distillation for efficient

denoising. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,

pages 709–718, 2022.

[32] Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiqing Li. Monte carlo de-

noising via auxiliary feature guided self-attention. ACM Transactions on Graphics (TOG), 40(6):1–

13, 2021.

[33] Xianyao Zhang, Melvin Ott, Marco Manzi, Markus Gross, and Marios Papas. Automatic feature

selection for denoising volumetric renderings. 41(4):63–77, 2022.

[34] Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. Ensemble denoising for monte carlo

renderings. ACM Transactions on Graphics (TOG), 40(6):1–17, 2021.

25



Acknowledgments in Korean

WIP

26



Curriculum Vitae in Korean

이 름: 한 규 범

학 력

2014. 2. – 2017. 2. KAIST 부설 한국과학영재학교

2017. 2. – 2021. 8. 한국과학기술원 전산학부 및 전기및전자공학부(학사,부전공)

2021. 8. – 2023. 8. 한국과학기술원 전산학부 (석사)

경 력

2018. 12. – 2019. 2. SK 하아닉스 QRA 인턴

2019. 12. – 2020. 3. 휴멜로(Humelo) 데이터 엔지니어링 인턴

2021. 8. – 2022. 2. 한국과학기술원 전산학부 조교 (CS482, 대화형컴퓨터그래픽스)

2022. 2. – 2023. 8. 한국과학기술원 전산학부 조교 (CS206, 데이타구조)

연 구 업 적

1. Kyu Beom Han, Olivia G. Odenthal, Woo Jae Kim, and Sung-Eui Yoon, ”Pixel-wise Guidance

for Utilizing Auxiliary Features in Monte Carlo Denoising”, Proc. ACM Comput. Graph. Interact.

Tech., vol. 6, issue. 1, no. 11, pp. 1-19, May. 2023

2. Kyu Beom Han and Sung-Eui Yoon, ”반사 공간 정보를 이용한 몬테카를로 렌더링 이미지 노이즈

제거”, 한국정보과학회 2022 한국컴퓨터종합학술대회 (KCC 2022)., vol. 49, no. 1, pp. 1438-1440,

Jun. 2022

27


