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초 록

적대적 공격을 하고자 하는 타겟 모델의 정보가 주어지지 않은 상황에서도 정보가 알려져 있는 대리 모델에

적대적이미지를생성해타겟모델을속이는전이가능한적대적공격은그실용성덕분에각광을받아왔다.

하지만 적대적 공격의 전이율을 높이는 기존의 기법은 결정론적방법으로 적대적 이미지를 생성한다는 단점

을 가진다. 그렇게 생성된 적대적 이미지는 대리 모델의 좋지 않은 로컬 옵티멈에 빠져 과적합되고, 이는

전이율 손실을 일으킨다. 이 문제를 해결하기 위해 본 논문에선 이미지의 현저한 특징점을 다양하게 교란시

키는 Attentive-Diversity Attack (ADA)을 제안한다. 다른 구조와 파라미터 값을 가진 모델이 공통적으로

학습하는 특징점을 교란시키기 위해 이미지 어텐션을 교란시킨다. 그리고 이러한 특징점을 다양한 방법으

로 교란시킴으로써 더 다양한 전이 가능한 적대적 섭동을 학습하고, 좋지 않은 로컬 옵티멈에 빠지는 것을

방지한다. 이를 공격 생성기 모델을 사용하여 학습시키고, 잠재 코드를 이용하여 공격 생성기가 생성하는

적대적 섭동을 제어한다. 다양한 실험을 통해 기존 방법과 비교하여 본 방법의 높은 전이율을 확인하였다.

핵 심 낱 말 딥러닝, 컴퓨터 비전, 적대적 공격

Abstract

Improving the adversarial attack transferability, or the ability of an adversarial example crafted on a

known model to also fool unknown models, has recently received much attention due to their practicality

in real-world scenarios. However, existing methods that try to improve such attack transferability craft

perturbations in a deterministic manner. Thus, adversarial examples crafted in this manner often fail to

fully explore the loss surface and fall into a poor local optimum, suffering from low transferability. To solve

this problem, we propose Attentive-Diversity Attack (ADA), which disrupts diverse salient features in a

stochastic manner to improve transferability. We first disrupt the image attention to perturb universal

features shared by different models. We also disturb these features in a stochastic manner to explore the

search space of transferable perturbations more exhaustively and thus to avoid poor local optima. To this

end, we use a generator to produce adversarial perturbations that each disturbs features in different ways

depending on an input latent code. Extensive experimental evaluations demonstrate the effectiveness of

our method, outperforming the transferability of state-of-the-art methods.

Keywords Deep Learning, Computer Vision, Adversarial Attack
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Chapter 1. Introduction
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Figure 1.1: Conceptual illustration of class decision boundaries of a surrogate model and target models

along with the adversarial examples crafted by traditional methods and our method (ADA). Adversarial

examples by traditional methods are crafted in a deterministic manner and thus easily fall into a poor local

optimum, overfitting to the surrogate model. In contrast, our method generates diverse perturbations

and avoids such local optimum by exploring the search space of adversarial examples more exhaustively.

While deep neural networks (DNNs) have achieved impressive performance on numerous computer

vision tasks [1, 2, 3], they have been known to be vulnerable against adversarial examples [4, 5]. Performed

by adding a maliciously designed perturbation to the image, such adversarial attack is categorized as

white-box or black-box depending on the knowledge of the model accessible to the attacker, such as its

weights or structures. Recent works have focused on more challenging black-box attacks due to their

practicality in real-world scenarios. Query-based attacks [6, 7, 8], which is a branch of black-box attacks,

exploit the query outputs of an unknown model to estimate the gradients of an unknown model, but

the excessive number of required queries limits their practicality. Instead, more attention has been given

to transfer-based attacks that rely on the attack transferability, which is the ability of an adversarial

example crafted on a white-box surrogate model to fool black-box target models.

However, traditional gradient-based white-box attacks (e.g., BIM [9], PGD [10], etc.) often suffer

from poor transferability because they easily overfit to the surrogate model. To this end, some have

proposed more advanced optimization algorithms for these gradient-based methods to reduce overfitting.

Dong et al. [11] applied a momentum strategy, Xie et al. [12] applied random transformations to the
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image, Dong et al. [13] proposed a translation-invariant attack, and Wang et al. [14] applied variance

tuning for more stable momentum. Based on findings that different models learn similar feature repre-

sentations for same images, another branch of works has focused on disrupting the intermediate feature

representations of image; Zhou et al. [15] maximized the distance between the features of the original

image and the adversarial image. However, classifiers tend to also learn model-specific features [16], and

näıvely disrupting these features can overfit the attack to the surrogate model. More recent works per-

turbed salient features; Wu et al. [17] disrupted the attention heatmaps, and Wang et al. [18] proposed

aggregated gradients to perturb object-aware features.

Nevertheless, these methods still rely on a gradient-based method [9] that generates perturbations

in a deterministic manner. They iteratively update a perturbation in a single, specific direction that

maximizes the given objective function, and without sufficient stochasticity in this process, they often

fail to fully explore the entire loss surface of the model. Thus, as shown in Fig. 1.1, with low diversity,

adversarial examples crafted by these attacks can easily fall into a poor local optimum and overfit to the

surrogate model, suffering from low transferability.

To solve this problem, we propose Attentive-Diversity Attack (ADA), which improves the transfer-

ability of adversarial examples by disrupting salient features in a diverse manner. Primarily, we step

away from the gradient-based method and use a generator to craft adversarial perturbations for a given

image. Then, based on recent findings [17, 18] that specifically disrupting the salient features of the image

boosts transferability, we perturb the image attention representation, which highlights features that are

responsible for model decision and thus are likely to be shared across different models. Then, to prevent

the generator from corrupting the attention in a deterministic manner and thus falling into a poor local

optimum, we guide the generator to disrupt these features in a diverse and stochastic manner. More

specifically, we pass a latent code as an input to the generator and guide it to craft diverse perturbations

for different latent codes. In that way, as shown in Fig. 1.1, the generator explores the search space of

transferable adversarial examples more exhaustively and can learn to craft diverse perturbations that are

located outside the poor local optimum. These adversarial examples effectively fool the target models,

while those crafted by existing deterministic methods become overfitted to the surrogate model.

In summary, our contributions are as follow:

� For the first time, we introduce stochasticity to the generation of adversarial examples in the feature

level to improve their transferability.

� We propose Attentive-Diversity Attack (ADA), an effective generator-based adversarial attack

framework that perturbs image attention in a diverse, non-deterministic manner.

� Extensive experiments exhibit the superior transferability of our method as compared to existing

state-of-the-art methods.
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Chapter 2. Related Works

This section discusses the recent trend in both white-box and black-box adversarial attacks.

2.1 White-box Attacks

White-box attacks exploit the information of a model, such as its weights and structures, to generate

adversarial images. One popular branch of white-box attacks rely on the gradient-based method [4,

9, 10], which directly exploits the loss gradient to generate adversarial perturbations. These attacks,

however, are known to generate deterministic adversarial examples [19]. Another branch of works has

focused on generator-based attacks [20, 21, 22, 23, 24], which employ a generator to produce adversarial

perturbations. While these white-box attacks have shown to be transferable to some extent [25, 26], such

ability remains very limited, leading to boosted interests on more practical black-box attacks.

2.2 Black-box Attacks

Unlike white-box attacks, black-box attacks fool models that are kept hidden from the attacker [27,

28, 11, 13, 29, 30, 31, 32, 14, 17, 33, 12, 15].

Query-based method is a branch of black-box attacks that relies on the query results available

from black-box models to estimate the gradients. Papernot et al.used query information and knowledge

distillation to build a white-box approximation of the black-box model [30]. Brendel et al. [27] and Chen

et al. [28] used query access to estimate the gradients of the black-box model. AutoZOOM increased

the query search efficiency of ZOO [28] by employing an autoencoder [31]. Ilyas et al. [29] proposed a

method of fooling black-box models with limited number of queries. Nevertheless, query-based methods

still require an excessive number of queries and trial-and-errors to craft a successful attack, limiting their

practicability in real-world usages [13].

In contrast, transfer-based method aims to boost the transferability of white-box attacks to fool

unknown target models. Since this method does not require any query access, the same attack can be

used to fool multiple target models and does not require extensive computational costs. Thus, they have

shown to be much more practical than query-based attacks [13]. Numerous works on transfer-based

black-box attacks have focused on improving the optimization strategy of existing gradient-based white-

box attacks. In order to prevent the attacks from falling in to poor local maxima, MI-FGSM added a

momentum term to the loss gradient [11], DI2-FGSM applied random transformations to inputs [12],

TI-FGSM applied a predefined kernel to the loss gradient [13], and VMI-FGSM applied variance tuning

on gradients [14]. Noting that transferable attacks are also often robust against image transformations,

ATTA employed adversarial transformation networks [33]. There also have been attempts to modify the

objective functions of the attack. TAP perturbed image features in the intermediate layers of the white-

box model [15], ATA disrupted images on their attention representation [17], and FIA used aggregated

gradients to perturb object-aware features [18]. Nevertheless, all these attempts still rely on the gradient-

based method that leads to simple, deterministic attacks that easily overfit to surrogate models.

In this paper, we focus on boosting the transferability of transfer-based black-box attacks. Exist-

ing gradient-based attacks often overfit to vulnerable features that are unique to the surrogate model.

3



Also, since they greedily exploit the loss gradient, they generate deterministic attacks which may eas-

ily make the adversarial examples fall into poor local optima of the surrogate models. We solve these

problems by first adopting a generator-based attack and then guiding the generator to produce diverse,

non-deterministic adversarial examples. Additionally, we perturb the image attention to boost the trans-

ferability even further.
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Chapter 3. Preliminaries

Let fψ be a target classifier. The objective of an untargeted adversarial attack is to create an

adversary xadv of an image x in class t such that it leads to a misclassification on the target classifier

(i.e., fψ(xadv) 6= t). In this paper, we consider a black-box attack where we do not have access to the

target classifier. Instead, we employ an accessible surrogate model hθ that shares the same output space

with fψ but has different architectures and/or parameters. We then generate a transferable adversarial

example on the surrogate model as follows:

arg max
xadv

Lθ(x
adv, t), s.t. ‖x− xadv‖∞ ≤ ε, (3.1)

where Lθ(·, ·) is the classification loss on the surrogate model hθ, and ε is a constraint set on the magnitude

of perturbation.

The success of the black-box attack highly depends on the transferability assumption; an effective

adversary on one network can transfer to another. However, it has been observed that many existing

black-box attacks suffer from a limited transferability because they tend to overfit to the surrogate

classifier. Also, even though an ideal untargeted adversary should be able to populate a diverse set

of misclassification results (i.e., fψ(xadv) ∈ T \ {t}), existing methods tend to produce a deterministic

one. This is because they are mostly based on gradient-based optimization, which prefers a solution

that maximizes the classification loss (Eq. (3.1)). We argue and empirically demonstrate that such

deterministic property can also lower the chance of black-box attack being successful.

To address these challenges, we propose Attentive-Diversity Attack (ADA), an untargeted black-

box attack method with high transferability. We adopt attention perturbation to disrupt images on

highly transferable attention space. We also apply the feature diversification to encourage our method

to produce stochastic perturbations, each of which leads to different misclassification label by exploring

various transferable features and increrases the chance of improving transferability. We optimize these

objectives using an attack generator that has higher expressive power than previous gradient-based

methods.

5



Chapter 4. Attentive-Diversity Attack

Attack generator

(𝒈)
Gaussian

distribution

Original image 

(𝒙)

Adv. image 

(𝒙𝒛
𝒂𝒅𝒗) Attention

Attention

Latent code (𝒛)

Figure 4.1: Overview of Attentive-Diversity Attack (ADA). Given an image and a latent code, the attack

generator produces a perturbation that disrupts the image attention in a diverse manner.

In the following subsections, we elaborate on the main components of our Attentive-Diversity Attack

(ADA) (Fig. 4.1). First, we explain the rationale behind using attack generator (Section 4.1). Then,

we analyze how attention guidance can boost attack transferability and our approach to perturbing

attention (Section 4.2). Lastly, we elaborate on the role of diversity regularization, especially on boosting

transferability (Section 4.3).

4.1 Attack Generator

In this work, we step away from a widely-used gradient-based method that crafts perturbations in

an iterative and deterministic manner and instead use a generator to parameterize the adversary with a

DNN. As shown in Fig. 4.1, given an image x and a latent code z sampled from a Gaussian distribution,

the generator g learns to output an adversarial perturbation that is dependent on the latent code. We

then form an adversarial image xadvz as follows:

xadvz = Clipx,ε{x+ ε · g(x, z)}, (4.1)

where Clipx,ε [9] clips the perturbation in a per-pixel manner so that it is bounded to ε-ball of L∞

norm. How we exploit the latent code z to generate diverse adversarial perturbations will be discussed

in Sec. 4.3.
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Figure 4.2: Attention representations of an image across different models. While these models have

different weights and structures, they all focus on similar regions of the image for correct inference.

4.2 Attention Perturbation.

In order to boost transferability, we disrupt the image attention, which highlights features that are

responsible for model decision and are likely to be relevant to the main objects of the image [17, 18].

Fig. 4.2 visualizes the attention representations of four different models given an image. As shown in the

figure, such salient features are also likely to be shared across different models. As different classifiers

similarly rely on these object-related features to make decisions, perturbations on these feature on the

surrogate model will effectively transfer to other models.

Based on Grad-CAM [34], we define attention A as a weighted representation of features F , which

we set as the output from the last convolutional layer (e.g., Mixed 7c for Inc-v3), as follows:

A′(x; t) = αtF = GAP

(
∂yt
∂F

)
F. (4.2)

The weight αt denotes the importance of the feature F given the ground truth class t. It is obtained

by taking the gradient of yt – the prediction for class t – with respect to F and applying global average

pooling (GAP(·)) over the spatial dimension. To prevent the generator from perturbing only the few

channels with the highest magnitudes, we further apply channel-wise normalization on A′(x; t) as follows:

A =
αtA

′

‖αtA′‖2
. (4.3)

The generator learns to maximize the distance between the attention representations of the original

image and the adversarial image by maximizing the following attention loss Lattn:

Lattn = ‖A(xadvz ; t)−A(x; t)‖2. (4.4)

ATA [17] has also similarly disrupted the attention heatmaps extracted using the techniques of

Grad-CAM [34]. Our method differs from their approach on that we additionally apply channel nor-

malization. Without channel normalization, the generator perturbs only the few feature channels with

highest magnitudes and reduces the diversity of perturbations it can generate. To prevent this, unlike

ATA, we normalize each feature channel and enable the generator to disrupt more diverse features.

4.3 Feature Diversification.

Without any guidance, the generator may still greedily maximize the attention loss in a deterministic

manner just like gradient-based methods by learning to generate a same perturbation for different input

7



latent codes. Thus, we explicitly guide the generator to explore and corrupt diverse features in a stochas-

tic manner. We train it to disturb the attention representations differently for two distinct input latent

codes z1 and z2, each sampled from a Gaussian distribution, by applying a diversity regularization [35]

and maximizing the following diversity loss Ldiv:

Ldiv =
‖A(xadvz1 ; t)−A(xadvz2 ; t)‖

‖z1 − z2‖
. (4.5)

We craft two adversarial examples xadvz1 and xadvz2 each by passing z1 and z2, respectively, into the generator

(Eq. 4.1) and obtain their respective attention representations A(xadvz1 ; t) and A(xadvz2 ; t) (Eq. 4.2, 4.3).

Then, by maximizing the distance between the two representations, we force the generator to craft

semantically diverse perturbations.

While Yang et al. [35] originally proposed the diversity regularization, their applications have been

limited to pixel or feature levels. Diversity on these levels, however, may not necessarily translate to

diversity on the attention space and may fail to guide our generator to disrupt the salient features in

a diverse manner. To explicitly guide it to perturb the meaningful features in a diverse manner, unlike

existing approaches, we apply the diversity regularization on the attention level.

Overall, we learn the attack generator g to maximize:

L = Lcls + λattn · Lattn + λdiv · Ldiv, (4.6)

where Lcls is the cross-entropy loss between the adversarial image and the ground truth label, and λattn

and λdiv control the weights of the attention loss (Lattn) and the diversity loss (Ldiv), respectively.

There have been several attempts to craft diverse adversarial examples. Jang et al. [19] and Dong

et al. [36] modeled diverse perturbations from a single image, but their approaches are limited to pixel-

level diversity and improving adversarial robustness. Xie et al. [12] boosted transferability by crafting

perturbations on randomly transformed images, but their approach can only implicitly perturb features

in a diverse manner as a result of pixel-level transformations. In contrast, for the first time, we craft

semantically diverse perturbations by explicitly disrupting diverse features. As a result, we effectively

avoid poor local optimum, improving transferability as also shown by the experiment results (Table 5.1).
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Chapter 5. Experiments

In this section, we report the experiment results on our proposed Attentive-Diversity Attack (ADA).

We first report the experimental setups (Sec. 5.1). Then, we make comparisons on the transferability of

our method with that of existing state-of-the-art transfer-based black-box attacks (Sec. 5.2) and verify

that our method indeed generates diverse adversarial perturbations (Sec. 5.3). Lastly, we perform abla-

tion studies and hyperparameter analysis to verify the individual components of our method (Sec. 5.4).

5.1 Experimental Setups

We implement the attack generator by using a U-Net [23, 37] based convolutional encoder-decoder

consisting of three encoding blocks and three decoding blocks. Each encoding and decoding block

consists of a convolutional layer and a transposed convolutional layer, respectively, followed by a batch

normalization layer and a ReLU layer. At each encoding block, the latent code z is spatially expanded

and concatenated to the input of the block. The generator is trained for 100 epochs with learning rate of

1e-4 and the batch size of 8 using an Adam optimizer [38] with β1 = 0.5, β2 = 0.999, and weight decay

1e-5.

We use 10,000 images randomly selected from the ImageNet validation set [39] for train data and

1,000 images from the NeurIPS 2017 adversarial competition [40] for test data. We test our method on

Inception-v3 (Inc-v3) [2], Inception-v4 (Inc-v4) [41], Inception-ResNet-V2 (IncRes-v2) [41], ResNet-V2

(Res-v2) [42], and VGG16 (Vgg-16) [43]1. We compare our method with various state-of-the-art attacks

– MI-FGSM [11], DIM [12], VMI-FGSM [14], TAP [15], and FIA [18] – for which we set the number

of iterations T = 10, the step size α = 1.6, and the rest of the hyperparameters as specified in their

respective references. The maximum perturbation constraint ε is set to 16 under L∞ norm. For our

method, we use λattn = 10, λdiv = 1000, and 16 for the length of latent code z.

5.2 Comparison of Transferability

We first compare the attack transferability of our method and five existing transfer-based black-box

attacks, which are all based on a gradient-based method. We craft adversarial examples on four surrogate

models – Inc-v3, Inc-v4, IncRes-v2, and Res-v2 – shown on the second column and measure their attack

success rates (ASR), or the misclassification rate of a model [14], on five target models shown on the

second row (Table 5.1). Numbers marked in parantheses () represent the white-box setting; the surrogate

model is the same as the target model. We also report the ASR based on the ensemble logit of all black-

box target models, which are all different from the surrogate model, on the column Ensemble. The

results indicate that our method fools black-box target models with higher ASR than existing methods

in most cases, outperforming FIA by average of 6.4% on the ensemble model. Also, while our method

generally shows lower ASR on the white-box target models, it shows much higher ASR on black-box

target models, showing that it overfits less to the surrogate model and generalizes well to unknown

models.

1These models are publicly available at: https://github.com/Cadene/pretrained-models.pytorch
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Target models

Attack Inception V3 Inception V4 Inception-ResNet V2 ResNet V2 VGG16 Ensemble Rank

Surrogate models

Inception V3

MI-FGSM (97.9) 42.9 39.9 41.2 53.1 35.7 6

DIM (98.0) 68.3 61.9 53.1 68.6 58.2 5

VMI-FGSM (97.9) 69.6 66.7 57.6 70.0 61.8 4

TAP (100.0) 77.9 75.3 53.1 70.6 69.1 3

FIA (98.5) 84.2 80.1 69.3 85.6 77.6 2

Ours (96.1) 88.9 82.9 82.4 95.2 85.3 1

Inception V4

MI-FGSM 59.4 (98.9) 44.9 47.8 63.6 44.9 6

DIM 75.5 (97.9) 66.5 60.5 74.9 66.5 5

VMI-FGSM 76.6 (98.5) 70.0 65.1 76.8 68.9 4

TAP 75.6 (100.0) 70.2 59.7 82.6 72.2 3

FIA 83.3 (95.0) 78.5 74.6 85.2 78.3 2

Ours 85.2 (97.7) 67.6 79.0 89.5 79.5 1

Inception-ResNet V2

MI-FGSM 58.0 52.6 (99.4) 46.9 63.5 47.0 6

DIM 73.0 70.6 (94.8) 57.7 70.4 65.6 4

VMI-FGSM 78.4 77.4 (99.3) 64.5 74.2 71.6 3

TAP 74.1 66.8 (95.2) 46.7 63.0 51.8 5

FIA 81.6 77.1 (88.6) 66.9 81.9 74.8 2

Ours 82.5 89.4 (93.0) 80.7 89.4 85.9 1

ResNet V2

MI-FGSM 54.7 47.9 44.1 (99.6) 61.4 44.4 6

DIM 75.3 70.6 68.8 (99.1) 73.9 70.0 3

VMI-FGSM 72.7 67.4 64.7 (97.6) 72.3 65.3 4

TAP 51.8 44.3 44.5 (92.4) 68.2 52.6 5

FIA 81.2 76.7 74.5 (99.9) 82.9 74.1 2

Ours 79.7 90.9 71.9 (94.0) 93.1 80.6 1

Table 5.1: Attack success rates (%) of different attacks against various target models. The leftmost

column and the uppermost row show surrogate models and target models, respectively. Parentheses ()

indicates white-box attack where the target model is the surrogate model. Best results are highlighted

in bold, and “Rank” denotes the order of highest average ASR on black-box models.

Interestingly, our method outperforms existing methods by a significantly larger margin when the

architectures of the target models are more different from that of the surrogate model. For example,

while our attack crafted on Inc-v3 outperforms FIA by 4.7% on a more similarly structured Inc-v4 [44],

it outperforms FIA by a larger margin of 9.6% on a more differently structured Vgg-16 [44]. While

existing methods overfit to the surrogate model and show low transferability on models with more

distinct structures, our method shows high transferability regardless of the model structure.

5.3 Verification of Attack Diversity

Application to Adversarial Training. We now show that our method indeed generates diverse

adversarial perturbations to escape poor local optimum of the surrogate model. To do so, we first

evaluate the robustness of adversarial training models trained with different adversarial attacks including

our method. Adversarial training [4, 10], which learns a model to be robust against adversarial attacks

by training it with adversarially generated data, has been widely considered as one of the most effective

defense strategies. It solves the following minimax optimization problem:

min
θ

E(x,y)∼D

[
max
xadv

L(hθ(x
adv), t)

]
, (5.1)

where h is a model with parameter θ, xadv is an adversarial example crafted from a natural image

with label t from dataset D, and L(·, ·) represents the classification loss. Recent findings [19, 36] have

shown that training an adversarial training model with a diverse set of adversarial examples improves its
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No Attack FGSM BIM PGD Ours

No defense† 91.85 35.51 2.89 2.59 4.45

FGSM 79.24 82.25 81.02 83.99 83.77

BIM 83.17 82.80 83.17 83.10 82.28

PGD 85.84 84.73 85.62 85.54 85.10

Ours (w/o Ldiv) 89.18 80.80 85.62 86.66 86.95

Ours (w/ Ldiv) 90.88 85.92 88.21 89.25 89.62

Table 5.2: Classification accuracy (%) of adversarial training models under various attacks. Leftmost

column and uppermost row represent the attacks used for training and the attacks used for evaluation,

respectively. Adversarial examples used for evaluation are crafted on a classifier trained with original

images (marked †). Best results are highlighted in bold.

Surrogate model

0.978 0.859

Original
FIA
Ours

Target model

0.693 0.963

Original
FIA
Ours

Figure 5.1: PCA visualization on surrogate model (Inc-v3) and target model (Res-v2) for features of

adversarial examples crafted by FIA (blue) and our method (red).

robustness. Based on this idea, we test the robustness of a model trained against adversarial examples

crafted by ADA to show that our method indeed generates diverse perturbations. We train Inc-v3 for

30 epochs using batch size of 8, an SGD optimizer with learning rate of 0.001, momentum of 0.9, and

weight decay of 5e-4 on Caltech101 dataset [45] with 8,681 images and 101 classes randomly split into

7,332/1,349 for training/test set.

We report the classification accuracy of each adversarial training model trained by a different attack

in Table 5.2. The model trained by our method with Ldiv records the highest robustness in all cases,

outperforming that trained without Ldiv by 3.24% in average. Our method without Ldiv and gradient-

based methods (FGSM [4], BIM [9], and PGD [10]) train the classifiers only against a limited set of

deterministic adversarial examples. In contrast, our method with Ldiv trains the model against diverse

adversarial examples and makes it more robust.

Effects of Diversity on Transferability. To show that disrupting diverse features indeed improves

transferability, we visualize in Fig. 5.1 the features of adversarial examples crafted by FIA and our

method by projecting them on the 2D space spanned by eigenvectors obtained from PCA. As shown

in the figure, feature representations of FIA adversarial examples form a dense cluster, while those of

our method are widely spread out. Also, FIA generates stronger adversarial examples compared to our

method on the surrogate model (FIA); the average `2 distance from the feature of the original image to

the features of adversarial examples crafted by FIA is 0.978, which is higher than that of our method,
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Spider web Curtain Wool Peacock

ADA

Brain coralBadger

Original

Figure 5.2: Original/adversarial images (top row) crafted by our attack and their attention heatmaps

(bottom row). Our attack crafts adversarial examples that disrupt the attention and final predictions in

diverse ways.
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Figure 5.3: Analysis of our method with all adversarial examples crafted on Inc-v3 as the surrogate

model. (a) comparison of attack success rates (ASR) on the ensemble of black-box target models with

varying perturbation constraint ε, (b) ASR on varying weights for attention loss λattn when λdiv = 1000,

and (c) ASR on varying weights for diversity loss λdiv when λattn = 10.

which is 0.859. However, FIA suffers from poor transferability on the target model, showing a far lower

average distance of 0.693 as compared to 0.963 of our method. Our method effectively avoids poor local

optimum and improves transferability by learning to craft semantically diverse perturbations.

Visualization of Diverse Adversarial Examples. We additionally visualize semantically diverse

adversarial examples crafted by our method in Fig. 5.2. From a single image, our method generates

various adversarial examples that disrupt the image attention and model predictions in a diverse manner.

5.4 Ablation Studies

Various Perturbation Constraint ε. In Fig. 5.3(a), we compare the transferability of our attack

with the existing transfer-based black-box attacks under lower perturbation constraints ε (i.e., 4, 8, and

12) by reporting the ASR on the ensemble of black-box target models. Our method exhibits superior

transferability over all of the existing methods under all constraints, outperforming FIA by average ASR

of 7.7%. Even when perturbations are less visible, our method exhibits high transferability.

Effects of Lattn. Fig. 5.3(b) shows ASR of our attack with varying λattn, or the weights for Lattn, when

λdiv is fixed to 1000. In general, Lattn plays an important role at boosting the transferability, achieving
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Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Vgg16 Ensemble

Ours (w/o channel-norm) 79.3 87.2 92.9 72.0 88.9 82.9

Ours 85.2 89.4 93.0 80.7 89.4 85.9

Table 5.3: Comparison of attack success rates (%) as we remove channel-wise normalization from the

attention loss Lattn. All adversarial examples are crafted using IncRes-v2 as the surrogate model. Best

results are highlighted in bold.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Vgg16 Ensemble

Pixel-level 76.3 79.0 91.7 73.8 88.2 74.8

Feature-level 76.5 85.2 92.4 76.7 88.4 82.5

Ours 85.2 89.4 93.0 80.7 89.4 85.9

Table 5.4: Comparison of attack success rates (%) as we apply the diversity loss Ldiv on the pixel/feature-

level. All adversarial examples are crafted using IncRes-v2 as the surrogate model. Best results are

highlighted in bold.

the highest performance when λattn = 10. Interestingly, using a slightly lower weight of λattn = 1 leads

to higher ASR on Inc-v4 but significantly lower ASR on the other target models. This is because a

lower weight on attention loss causes the attack to overfit to features specific to the surrogate model

Inc-v3, which has a similar architecture as Inc-v4. Thus, the adversarial examples fool Inc-v4 with a

high success rate but suffers from lower transferability to more differently structured models, such as

Res-v2 and Vgg-16.

Effects of Ldiv. Fig. 5.3(c) shows ASR as we alter λdiv, or the weights for Ldiv, when λattn = 10.

Similarly, Ldiv generally boosts transferability, achieving the highest performance when λdiv = 1000,

showing that exploring diverse features is vital for the attack to escape from poor local optimum. Also

in this scenario, our attack shows highest ASR on Inc-v4 when we apply a smaller weight on Ldiv, (i.e.,

λdiv = 100). Less emphasis on the feature diversification overfits the attack to features specific to Inc-v3,

which may be effective at fooling a similarly structured Inc-v4, but not the other black-box models. Too

much weight on diversity loss prevents the generator from disrupting features in a destructive manner

and lowers ASR.

Effects of Channel Normalization on Lattn. In Sec. 4.2, we claim that our work differs from the

work of Wu et al. [17] on that we apply channel-wise normalization (Eq. 4.3) on the attention loss Lattn

to prevent perturbation on only the few feature channels with the highest magnitudes. To verify this

claim, we test the attack transferability upon removing the channel-wise normalization process from our

framework, whose results are shown in Table 5.3. Our method using channel-wise normalization shows

higher ASR on all target models than our method without channel-wise normalization, showing that it

plays an important role perturbing the image attention in a diverse manner.

Applying Diversity Regularization on Different Levels. DSGAN [35], which originally proposes

the diversity regularization, applies the diversity loss on a pixel- and feature-level. We propose in Sec. 4.3

that our approach of applying diversity on the attention level guides our attack generator to disrupt the

salient features in a diverse manner and leads to higher transferability. To verify this claim, we modify

our diversity loss Ldiv (Eq. 4.5) such that it maximizes the distance between the two adversarial examples

on the pixel- or the feature-level. As shown in Table 5.4, applying diversity on the feature-level leads
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to higher transferability than applying diversity on the pixel-level. This is because the diversity on

the feature level guides the generator to disrupt image features in a diverse manner. However, näıvely

disrupting diverse features may not necessarily lead to diversity on the attention space, and our scheme

of applying diversity on the attention space leads to higher transferability.
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Chapter 6. Conclusion

In this paper, we have proposed Attentive-Diversity Attack (ADA) that generates highly transferable

adversarial examples. ADA relies on a generator to generate perturbations that disrupt image-salient

features in a non-deterministic manner. Consequently, it avoids overfitting to model-specific features, to

which existing attacks easily overfit and thus suffer from poor transferability. Exhaustive experiments

validate the superior performance of ADA against state-of-the-art methods and the effectiveness of its

individual components. In the future, we hope that our method can serve as a benchmark for evaluating

the robustness of various models.

This work has been published at the International Conference on Image Processing (ICIP) 2022.
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도와주신 (강)민철이형, 인규형, 희찬이형, 충수형님, (김)민철형님, 민성이형, 세빈이형, 진원이형께도 감

사드립니다. 이제는 졸업하셨지만, 제가 연구실에 처음 왔을 때 적응할 수 있도록 도와주신 Yuchi 박사님,

김수민 박사님, 권용선 박사님, 훈민님, 창호군, 진혁님, 인영님, 형열님, 규연님, Harry, Pei에게도 감사의

말씀을드립니다. 연구에몰두할수있도록복잡한행정일을처리해주신김슬기나선생님께도감사의말씀을

올립니다. 함께 시간을 보낼 수 있어서 행복했고, 박사과정 때도 함께 할 생각에 기대가 됩니다.

마지막으로 지금까지의 시간 동안 웃음을 잃지 않게 해준, 그리고 앞에 놓여진 박사과정도 함께 할

시목이에게도 고마운 마음을 전합니다. 항상 바쁘다는 핑계로 자주 찾아 뵙지 못했지만, 자신감을 잃지

않게 사랑으로 응원해주시고, 학계의 길을 걸을 수 있도록 격려해주신 부모님과 형에게도 감사의 마음을

전합니다. 항상 초심을 잃지 않고 열심히, 그리고 꾸준히 나아가겠습니다.
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Curriculum Vitae in Korean

이 름: 김 우 재

학 력

2013. 1. – 2016. 5. Northview High School, GA, USA

2016. 9. – 2021. 2. 한국과학기술원 전산학부 및 전기및전자공학부 (학사, 부전공)

2021. 3. – 2023. 2. 한국과학기술원 전산학부 (석사)

경 력

2018. 12. – 2019. 2. SK 하이닉스 인턴

2021. 3. – 2021. 6. 한국과학기술원 전산학부 조교 (CS101, 프로그래밍기초)

2021. 9. – 2022. 12. 한국과학기술원 전산학부 조교 (CS206, 데이타구조)

2022. 3. – 2022. 6. 한국과학기술원 전산학부 조교 (CS101, 프로그래밍기초)

연 구 업 적

1. Woo Jae Kim, Yoonki Cho, Junsik Jung, and Sung-Eui Yoon, “Feature Separation and Recal-

ibration for Adversarial Robustness”, IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023 (under review).

2. Guoyuan An, Woo Jae Kim, Saelyne Yang, Yuchi Huo, Rong Li, and Sung-Eui Yoon, “Towards

Content-based Pixel Retrieval in Revisited Oxford and Paris”, IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2023 (under review).

3. Woo Jae Kim, Seunghoon Hong, and Sung-Eui Yoon, “Diverse Generative Perturbations on At-

tention Space for Transferable Adversarial Attacks”, IEEE International Conference on Image Pro-

cessing (ICIP), 2022.

4. Yoonki Cho, Woo Jae Kim, Seunghoon Hong, and Sung-Eui Yoon, “Part-based Pseudo Label

Refinement for Unsupervised Person Re-identification”, IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2022.

5. Kyuyeon Kim, Junsik Jung, Woo Jae Kim, and Sung-Eui Yoon, “Deep Video Inpainting Guided

by Audio-Visual Self-Supervision”, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) 2022.

6. Woo Jae Kim, and Sung-Eui Yoon, “적대적공격에견고한피처신뢰도기반다운샘플링”, Workshop

on Image Processing and Image Understanding (IPIU), 2022.
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