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Abstract We propose to use discriminative subgraphs

to discover family photos from group photos in

an efficient and effective way. Group photos are

represented as face graphs by identifying social contexts

such as age, gender, and face position. The previous

work utilized bag-of-word models and considered

frequent subgraphs from all group photos as features

for classification. This approach, however, produces

numerous subgraphs, resulting in high dimensions.

Furthermore, some of them are not discriminative.

To solve these issues, we adopt a state-of-the-art,

frequent subgraph mining method that removes non-

discriminative subgraphs. We also use TF-IDF

normalization, which is more suitable for the bag-of-

word model. To validate our method, we experiment

in two data sets. Our method shows consistently

better performance, higher accuracy in lower feature

dimensions, compared to the previous method. We

also integrate our method with the recent MS face

recognition API and release it in a public website.

Keywords image classification, subgraph mining,

social context, group photographs.

1 Introduction

Recent studies on image classification focus on

object and scene classification. They show remarkable

performance thanks to the improvement of image

features such as convolutional neural network

(CNN) [11]. These image features are built from

pixel-level descriptors, and may not be enough

to describe group photos, since classifying group
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(a) non-family (b) siblings

(c) single parent (d) nuclear family

(e) extended family

Fig. 1 We test our method against a new, extended dataset

consisting of non-family (a) and different family types (b) -

(e). Our method achieves the highest accuracy, 79.34%, with

90 dimensions, while the state-of-the-art method achieves 76.8%

with 1000 dimensions.

photos requires to utilize more semantic information

like relations, events, or activities. Interestingly,

humans can classify types (e.g., friends and family)

of group photos without much training, because we

can estimate a variety of social contexts such as

age, gender, proximity, and place, by observing face,

position, clothing, and other objects.

Once we identify the social context on group photos,

we can use this information for various applications.

One application is to control privacy of shared images

in various social websites (e.g. Facebook). People share
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(a) Sending a query

(b) The result of the query

Fig. 2 Our demo site using the proposed classification method.

images sometimes without much consideration on what

information shared images can deliver to other peoples.

When we identify that a shared group photo is a family

photo containing children, we may wish to share that

image to a small circle of persons, e.g., relatives, instead

of publicly.

For classifying group photos, Chen et al. [2] proposed

a method to categorize group photos into family

and non-family types. This method assumes that

annotations about age, gender, and face position

are well-estimated beforehand by using existing face

detection and statistical estimation derived from the

pixel context. On top of that, they proposed to use

a social-level feature named as Bag-of-Face-subGraph

(BoFG) to represent group photos by graphs. For

constructing BoFGs, a mining algorithm extracting

frequent subgraphs is adopted. This is based on the

assumption that prominent social subgroups captured

in group photos can be identified by looking at

frequently appearing subgraphs.

While the prior method enlightens an interesting

research direction of classifying group photos, it

has certain drawbacks. It first requires a user-

specified threshold to determine the number of feature

dimensions in a training phase. Furthermore, as we

have more frequent subgraphs by having more feature

dimensions, we also raise the probability as a side effect

that more non-discriminative subgraphs are selected

due to repetitive and redundant patterns. In other

words, thresholding the number of subgraphs with

the frequency criterion alone can cause a scalability

problem.

Main contributions. To overcome these issues, we

survey the state-of-the-art subgraph mining techniques,

and propose to use a subgraph mining technique,

CORK, that identifies discriminative subgraphs and

culls out redundant subgraph generations. We also

propose to use a TF-IDF, a widely-used feature

normalization for the bag-of-models, to our BoFG

feature.

To validate benefits of our method in terms of

classifying family and non-family types of group

photos, we have tested the prior and our methods in

two different datasets (Fig. 1) including the public

dataset [8]. Overall, our method shows higher

accuracy with less dimensions over the prior method.

Furthermore, our method does not require a manually

tunned threshold for computing dimensions of our

BoFG features.

We have also integrated our method with the face

API 1 of Microsoft Project Oxford and released it at

our demo site 2. In this system (Fig. 2), users can test

their own group images and see how well our method

performs with them.

2 Related work and background

We review prior approaches that are related to our

method.

2.1 Social context in photographs

Social contexts contain various information such as

clothing, age, gender, absolute or relative position, face
1https://www.projectoxford.ai/face/
2http://is-fam.net/
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Discriminative Subgraphs for Discovering Family Photos 3

angle, gesture, body direction, and so on. They have

been widely used to recognize people and groups [2,

14, 23]. Several works analyzed the contexts to study

the structure of scenes in group photos [4, 7, 8]. Some

researchers utilized them to classify group types [2, 5,

14, 17], retrieve similar group photos [3, 16, 26], discover

social relations [18, 23], or predict occupations [19].

Pixel contexts in addition to the social contexts

have been used together to recognize a type of group

photos [14]. Some of well-known pixel-level features

include SIFT [13], GIST [15], CNN [11], etc. Social-

level features can be estimated by face detection,

clothing segmentation, or partial body detection.

2.2 Frequent subgraph mining

Our work is based on identifying subgraphs from

a graph representing the relationship between people

shown in group photos. Frequently appearing

subgraphs provide important cues on understanding

graph structures and similarity between different

graphs. As a result, mining frequent subgraphs has

been widely studied [10]. For various classification,

frequent subgraph mining has been used in training and

test phases to build a social-level feature, as used in

classifying family and non-family photo types [2].

We have found that extracted subgraphs significantly

affect classification accuracy. There are two simple

strategies to explore subgraphs in a database: (1) BFS-

based and (2) DFS-based approach [10]. The BFS-

based algorithm has been less used recently due to

its technical challenges in generating candidates and

pruning false positives. More advanced techniques

focus on efficient candidate generation, since the

subgraph isomorphism test is an NP-complete [6].

Recent successful algorithms proceed based on depth-

first search and pattern growth [10], i.e., subgraph

growing. Our method is also based on the DFS-

based strategy, and uses canonical labels to avoid

the scalability issue. We additionally measure the

discriminative power of each subgraph during the

pattern growth.

2.3 Graph-based image editing

In this work, we use graphs and histograms of their

subgraphs for discovering family photos. Interestingly,

there have been many graph based approaches for

image extrapolation [24], interpolation [1], image

segmentation [12], representations [9], etc. While these

applications are not directly related to our classification

problem, utilizing histograms of subgraphs could be

useful in these applications, e.g., better graph matching

5
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MST

(a) Generating a group photo to a face graph

AGE RANGE 0-2       3-7       8-12     13-19    20-36    37-65     66+

FEMALE

MALE

1 5 10 16 28 51 75

1 5 10 16 28 51 75

(b) 14 types of vertices

0 1 2 3

ORDER DISTANCE

(c) 4 types of edges

Fig. 3 Representing an image as a face graph (a) using 14

vertex types (b) and 4 edge types (c).

for extrapolation.

3 Backgrounds on social subgraphs

In this section, we give the background of using BoFG

features for group photo classification.

Chen et al. [2] proposed BoFG features for group

photo classification. This method constructs face

graphs (Fig. 3) and uses their subgraphs to describe

various social relationships. BoFG is analogous to the

bag-of-word model of text retrieval. For example, a

text corpus corresponds to a group photo album, a

document to an image, and a word to a subgraph in a

face graph, respectively. The main difference between

these models is that the-bag-of-word model performs

clustering over all vectors in order to obtain a codebook,

whereas BoFG performs frequent subgraphs mining

over all the face graphs.

Attributes of group members enable us to

discriminate the type of groups, although we do not

even know their names or relationships. In addition,

understanding each one’s position is informative to

infer physical and relationship closeness among people.

Chen et al. [2] showed that only knowing gender, age,

and face positions as attributes of group members

3
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works effectively for a binary classification of family

and non-family photos. Our approach is also based

on this approach, and represents a group photo into a

face graph, elaborated below.

Face graphs. Fig. 3 illustrates an example of

representing a group photo to a face graph. Each node

of the graph corresponds to each person in the group

photo, and is associated with a vertex label describing

age and gender. Each edge between two nodes encodes

relative positions between two people.

There are 14 different types describing age and

gender for each vertex label. The age ranges from 0-

year-old to 75-year-old, and is categorized into seven

age types. There are two gender types, male and

female, and they are visualized by square and circle,

respectively in Fig. 3 (b). The combinations of age and

gender result in 14 different types. Identifying faces

and their attributes have been well studied [21, 27],

and APIs of performing these operations are available,

as mentioned in Sec. 1.

Most previous works used the Euclidean distance

in image space, i.e., pixel distance, to measure the

closeness between persons in group photos [8, 18, 23,

26]. Unfortunately, it has been known not to be

invariant to scales of images, faces, distance to camera,

or the orientation angle of a face. Instead, we use an

order distance that indicates how close people stand

each other. The order distance has been demonstrated

to be more stable over the pixel distance in terms of

various factors [2]. The order distance is computed as

the path length among vertices on a minimum spanning

tree (MST) generated from a face graph. Such order

distance is used for each edge label such as Fig. 3 (c).

Bag-of-Face-subGraph (BoFG). Once we represent

group photos into face graphs, we extract frequent

subgraphs and regard them as BoFG features for

classification. BoFG has been proposed to be a useful

feature to compare structures of group photos. It

helps to infer a type of a group by using substructures

of groups. For example, in Fig. 3, edges between

two vertices of 28f and 28m (i.e., mother-father

relationship), and between 28f and 5m (i.e., mother

and son relationship) provide additional information on

social relationship over each node of those edges; f and

m represent female and male gender types, respectively.

Subgraph enumeration via gSpan. The prior work

regarded frequent subgraphs as BoFG features, and

generated such subgraphs by frequent subgraph mining,

specifically, the gSpan method [25]. Most prior

approaches of frequent subgraph mining [10] initially

generate candidates of frequent subgraphs and adopt a

pruning process to remove false positives. The pruning

process, unfortunately, has a heavy computational cost,

because it requires subgraph isomorphism testing.

gSpan adopted in the prior classification system [2]

ameliorated this computational overhead issue by

utilizing two techniques, DFS lexicographic order and

minimal DFS code. Specifically, we first traverse an

input graph, G, in a Depth-First Search (DFS) and

assign an incrementally increasing visiting order to a

newly visited vertex. Whenever we traverse an edge

from vm and to vn of the graph G, we represent the

traversed edge into a 5-tuple DFS code:

G = (m, n, Lm, L(m,n), Ln), (1)

where m and n are vertex indices computed by the

visiting ordering during the DFS traversal, Lm and Ln

are vertex labels of vm and vn, L(m,n) is a edge label

associated with the edge.

A graph, however, can have multiple DFS codes

depending on traversal orders of vertices and edges.

gSpan particularly allows the DFS lexicographic order

computed from labels, Lm, L(m,n), Ln, of vertices and

edges, and uses the DFS code corresponding to the

minimal lexicographic order from the graph G. In this

way, we can remove redundant subgraphs and maintain

a subgraph among its isomorphic subgraphs.

To check the subgraph isomorphism, we simply look

at the DFS code of a subgraph, GS , to see whether the

code is equal or bigger than ones generated by prior

subgraphs. If so, this indicates that GS is a redundant

subgraph, which is isomorphic to a prior subgraph.

An illustration of generating DFS codes and pruning

process is shown in Fig. 4.

To define frequently appearing subgraphs, gSpan

requires a user defined parameter, known as minimum

frequency. We consider all different subgraphs

whose frequency counts are bigger than the minimum

frequency to be features of the BoFG.

The aforementioned method focuses on extracting

frequency-based subgraphs and has some limitations

for graph classification. Extracted frequent subgraphs

in this approach may not show structural differences

between classes. This is a similar problem even in the

text classification. For instance, ‘a’ and ‘the’ are most

commonly appearing words, but are not discriminative

words for document classification. Moreover, the

minimum frequency of subgraphs for defining BoFGs

should be picked through a tedious trial-and-error

approach for achieving high accuracy.
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Fig. 4 This figure shows a process of generating all the

subgraphs having one edge or more in gSpan. During the

enumeration of subgraphs, gSpan prunes subgraphs once their

DFS codes are equal to or bigger than to prior ones. We highlight

three subgraphs labelled a), b), and c), and their DFS codes

in below. 5f is a 5-year-old female, while 5m is a 5-year-

old male. Let the lexicographic orders of vertex and edge be

5f < 5m < 28f < 28m and 0 < 1 < 2. Note that the subgraphs

b) and c) are isomorphic to each other. However, the subgraph

of c) is not a minimal DFS code because it is bigger than that of

b). In this manner, the search space can be pruned; the dotted

subgraphs are pruned during the DFS-based expansion.

To address these drawbacks of using frequently

appearing subgraphs, we propose to use discriminative

subgraphs, adopt a recent subgraph mining method,

CORK [22], extracting such discriminative subgraphs,

and apply it to our classification problem of group

photos. Additionally, we further improve the

classification accuracy by adopting and tailoring the

TF-IDF normalization scheme to our problem.

4 Our approach

In this section, we explain our approach for

classifying group photos into family and non-family

types.

4.1 Overview

Fig. 5 shows the overview of our method. As off-

line process, we first generate face graphs from group

photos in a training set and extract discriminative

subgraphs as Bag-of-Face-subGraph (BoFG) features

from face graphs. We utilize family and non-family

labels associated with training images. We then extract

Online

Offline

Train set

Query

Face Graph
Construction

Face Graph
Construction

SVM
Classifier

TF-IDF
Normalization

Histogram
of BoFG

Histogram
of BoFG

TF-IDF
Normalization

Label
Predicted

Feature Projection

Frequent
Subgraph

Mining

Discriminative
Subgraph

Mining

Overview

3

Fig. 5 The overview of our approach. The red-box indicates

the main contributions of our method.

a BoFG feature for each photo and normalize the

feature using by the TF-IDF weighting. Through

discriminative learning, we finally construct a SVM

classifier.

When a query image is provided, we represent it to a

face graph, and extract and normalize a BoFG feature

from the graph. We then estimate a query’s label by

utilizing the pre-trained classifier.

Our work adopts face graphs and their subgraphs

as the BoFG features for the classification problem

(Sec. 3). For achieving higher accuracy in an efficient

manner, we additionally propose using discriminative

subgraphs (Sec. 4.2) inspired by a recent near-optimal

selection method [22]. We also normalize BoFG

features using the term frequency and inverse document

frequency, i.e.,the TF–IDF weighting scheme (Sec. 4.3).

4.2 Discriminative Subgraphs Mining

We would like to identify discriminative subgraphs

that are characteristic features in each category. We

have identified similar issues from data mining, and

found that CORK [22] works well for our problem.

CORK considers statistical significance to

select discriminative subgraphs. It defines a new

measurement counting the number of features that are

not helpful for classification among candidate features.

This measurement can be integrated into gSpan

as a culling method. It can reduce the number of

features, while preserving performance in classification

and can prune search space without relying upon a

manually-tuned frequency threshold.

A near-optimality of CORK is obtained from a

submodular quality function, q(·), using a greedy

forward feature selection. The function q(·) considers

presence or absence of each subgraph in each class. q(·)
for the set containing subgraph, S, is defined as the

following:

q({S}) = −(AS0 ·BS0 + AS1 ·BS1), (2)

where A and B are two classes in a data set. AS0 is

5
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Fig. 6 A and B are two different classes in a given dataset.

a1∼3 and b1∼3 are images in class A and B, respectively. Each

indicator is 1, if its corresponding subgraph appears in each

image, otherwise 0. Referred to Eq. 2, q({S}) = −(0 ·1+3 ·2) =

−6 and q({T}) = −(0 · 3 + 3 · 0) = 0. As a result, the subgraph

T has a higher discriminative power than S.

the number of images of the class A that do not have

the subgraph set {S}. AS1 is the number of images

including the subgraph set {S} in the class A. The

subscript S0 and S1 are used in the same manner for

another class B.

When a subgraph appears or does not appear

simultaneously in both classes, it can be considered as

a non-discriminative feature between two classes. To

consider this observation, AS0 and BS0 are multiplied

together; the same reasoning applies for the product of

AS1 and BS1 . In this context, a feature becomes more

discriminative, as the quality function q(·) becomes

higher. Fig. 6 shows examples of the quality function

for two subgraphs in class A and B.

While generating subgraphs, we commonly expand

a subgraph S into another one, T , by adding a

neighboring edge or so. During this incremental

process, suppose that we already decided to include S

into our feature set. We then need to check the quality

of having a newly expanded feature T on top of S. As

a result, we need to reevaluate q({T}).
Unfortunately, this process can require an excessive

amount of running time, since as the number of

features increases to N , the number of possible feature

combinations can increase exponentially to 2N .

To accelerate this process, CORK relies on a pruning

criterion. Especially, the upper bound of the quality

function is derived based on three possible cases, when

we consider a supergraph T from its subgraph S. One

of such cases is that images from class A do not have the

supergraph T , while images in the other class have the

supergraph and thus their indicator values are affected.

The second case is that the scenario of the first case

is applied in the reverse way to class A and B. The

third case is where we do not have any changes. By

considering these three different cases, the upper bound

of the quality function is derived as the following [22,

Theorem 2.2, 2.3]:

q({T}) ≤ q({S}) + max


AS1 · (BS1 −BS0)

(AS1 −AS0) ·BS1

0

 . (3)

While expanding subgraphs, we prune the children

of supergraphs T expanded from the subgraph S,

when the quality function of T is equal to the one of

those upper bounds. This culling criterion is adopted,

since it is guaranteed that we cannot find any better

supergraphs than T whose quality function is higher

than the the upper bound shown in the aforementioned

inequality. This approach has been proven to identify

discriminative subgraphs whose quality function values

are bigger than a certain lower bound [22, Theorem

2.1]. Furthermore, unlike gSpan, users do not need

to provide manually-tuned parameters for identifying

discriminative subgraphs.

4.3 TF-IDF normalization

Once we extract features, we normalize those

features. TF-IDF [20] is one of commonly

adopted normalization schemes, mainly for document

classification. We apply this normalization to our

feature, which resembles the bag-of-word model.

Inspired by the TF-IDF normalization scheme, we give

higher weights to more frequent features in each image

and deemphasize features that appear in more images.

In particular, our TF-IDF weighting scheme of a

subgraph s occurring in an image i given an image

database D is defined as the following:

TF–IDF (s, i, D) = TF (s, i) × IDF (s, D),

TF (s, i) = log (1 + fs,i),

IDF (s, D) = log (
N

1 + ns
),

(4)

where fs,i is the number of the subgraph s occurring

in the image i, N is the number of all images in the

database D, and ns is the number of images with the

subgraph s. If fs,i is zero, TF term would be undefined.

To prevent this case, a small constant, 1, is added.

Similarly, to avoid divide-by-zero, we also add the small

constant 1 to the denominator of the IDF term.

5 Results

We implemented prior and our methods for

discovering family photos in a machine that has Xeon

3.47GHz with 192GB main memory. We evaluate

the effectiveness of computing and using discriminative

feature selection along with TF-IDF normalization.

For classification, we use the support vector machine
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(a) (b) (c)

images only images both images only

in Chen’s in Chen’s and Ours in Ours

family 66 1,111 502

non-family 136 1,131 759

Tab. 1 The composition of Chen’s (a + b) and our data set

(b + c). (b) indicates the number of co-occurring images in

both Chen’s and ours. Many images of family and non-family

co-occur in ours and Chen’s, although we prepare the extended

data set without looking at their original labels.

(SVM). The classification is conducted with linear

kernel and 5–fold cross validation.

5.1 Datasets

To validate our approach, we use the existing dataset

provided by Chen et al. [2]. We additionally test

different methods against a new, larger and diverse

dataset, which is rearranged from the public data

set [8], as adopted also in the previous work. Based

on the protocol laid out in the prior work, we obtain a

‘soft’ ground truth containing 1,613 family photos and

1,890 non-family photos for our new, extended dataset.

The ‘soft’ ground truth for the new dataset is generated

without any prior knowledges such as looking at labels

of those images.

The new extended dataset also shares the same

images to the Chen’s dataset, since these two datasets

are arranged from the public dataset. We also measure

the common images in both or either one of two

datasets (Tab. 1). The difference from the previous

one is that the new dataset has 1,073 more photos

and includes wider sets of family types such as siblings,

single parent, nuclear family, and extended family, as

shown in Fig. 1.

Note that these images from the public data set have

labels, which are groups, wedding, and family types.

Our methods independently predict family types of

these images and measure accuracy by comparing their

predicted labels with the original ones associated with

the public data set.

We have also considered other datasets related to

group photos [5, 14]. Unfortunately, these datasets do

not contain labels directly for family and non-family

types. As a result, we were unable to use them for our

problem.

5.2 Effects of discriminative subgraphs

We test accuracy of different methods including ours

and the gSpan method [2]. We have implemented the

prior method by following the guideline of the original

paper [2]. For gSpan, we generate frequent subgraphs

up to 10 K subgraphs and sort them in the order

of document frequency and select them as BoFG. To

achieve the best accuracy for the gSpan method, it is

required for users to specify the number of subgraphs.

In this approach, we need to rely on many trial-

and-error procedures, while our method automatically

constructs a set of discriminative subgraphs.

We were unclear how the prior method uses the

DF term, because there is an ambiguity in which

the DF term is evaluated either after or during the

running process of gSpan 3. We thus experiment both

cases. gSpan+DF (1) and gSpan+DF (2) correspond

respectively to the adaption of DF posterior to and

during gSpan in Tab. 2. In Tab. 2, our method finds

the maximal number of subgraphs without using the

minimum frequency.

Our methods w/ and w/o the TF-IDF scheme in the

Chen’s dataset identify a small set of discriminative

subgraphs (i.e., 76 subgraphs), and achieves 80.61%

and 78.65% accuracy respectively. Our method in the

extended dataset achieves 77.26%, and shows 79.34%

with the TF-IDF scheme. gSpan+DF (1) and gSpan+

DF (1) methods show inferior results over our method

in most cases. Interestingly, the prior methods show

even lower accuracy as they use higher dimensions.

This is mainly because frequent subgraphs may not be

discriminative.

5.3 Effects of TF-IDF normalization

We measure accuracy of different methods with and

without TF-IDF normalization. Since gSpan + DF (2)

achieves higher accuracy than gSpan+DF (1), we show

the results of gSpan + DF (2) and ours for the test.

In both gSpan + DF (2) and ours, using TF-IDF

over DF improves the classification accuracy in most

cases. Especially, our method using TF-IDF achieves

the highest accuracy, 79.34%, for the extended dataset.

5.4 Comparison of subgraphs

We check the number of subgraphs co-occurring in

the BoFG features generated by both gSpan and our

method. This investigation can help us to understand

how many dimensions prior methods require in order to

obtain discriminative features extracted by our method.

Even in hundreds of thousands of dimensions extracted

by gSpan, some of discriminative subgraphs extracted

by our method are not identified (Tab. 4).

We also measure how well query images used in

the test phase are represented by extracted features.

For this, we measure how many query images are
3We have consulted authors of the gSpan technique for faithful

re-implementation of the gSpan method.
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Chen’s data set

dimension 76 100 500 1,000 2,000 3,000 4,000 5,000 10,000

gSpan + DF (1) 50.00% 51.51% 52.98% 54.65% 61.92% 68.33% 69.52% 68.78% 77.76%

gSpan + DF (2) 78.61% 77.92% 80.12% 78.16% 77.51% 77.31% 76.49% 77.14% 77.76%

Ours + TF–IDF 80.61% N/A

Our data set

dimension 90 100 500 1,000 2,000 3,000 4,000 5,000 10,000

gSpan + DF (1) 56.00% 58.37% 62.25% 61.26% 64.51% 67.48% 69.64% 71.84% 75.61%

gSpan + DF (2) 74.78% 74.84% 77.43% 76.80% 76.63% 76.83% 76.49% 76.09% 75.61%

Ours + TF–IDF 79.34% N/A

Tab. 2 The accuracy of different methods in Chen’s and our datasets.

Chen’s dataset

dimension 76 100 1,000 5,000 10,000

gSpan + DF (2) 78.61% 77.92% 78.16% 77.14% 77.76%

gSpan + DF (2) + TF–IDF 77.67% 77.63% 81.31% 81.18% 82.04%

Ours 78.65% N/A

Ours + TF–IDF 80.61% N/A

Our data set

90 100 1,000 5,000 10,000

74.78% 74.84% 76.8% 76.09% 75.61%

75.40% 75.09% 78.09% 77.55% 77.2%

77.26% N/A

79.34% N/A

Tab. 3 The accuracy of DF vs. TF–IDF in Chen’s and our extended datasets.

represented by null vector, indicating that query images

are not represented by any features extracted by gSpan

or our method (Tab 5). As a result, we can conclude

that the feature extraction of our method performs

better than other tested methods (gSpan + DF (1) or

gSpan + DF (2)).

6 Conclusions and future works

We have proposed a novel classification system

utilizing discriminative subgraph mining for achieving

high accuracy. We represent group photos as graphs

with age, gender, and face position, and then extract

discriminative subgraphs and construct BoFG features.

For extracting discriminative subgraphs, we proposed

to use a recent discriminative subgraph mining method,

CORK, that adopts a quality function with near-

optimal guarantees. We additionally proposed to

use the TF-IDF normalization to better support the

characteristic of BoFG features. To validate benefits

of our approach, we have tested different methods

including ours against two different datasets including

our new, extended dataset. Our method achieves higher

accuracy in the same dimensionality over the prior

methods. Furthermore, our method achieves higher

or similar accuracy over the prior work that relies on

manual turning and requires a higher dimensionality.

There are many interesting future directions. Since

our work is based on the concept of social relationships,

we consider subgraphs consisting of at least two

nodes. However, only a single node can provide

useful social cues. Incorporating single nodes

in BoFGs and investigating its effects should be

interesting. We would like to also investigate recent

deep learning techniques that learns low-level features

and classification functions. Due to the lack of

sufficient training datasets, we did not consider recent

deep learning techniques, but this approach should be

worthwhile for achieving higher accuracy.

Acknowledgements

We are thankful to our lab members for valuable

feedbacks, and to Ph.D. Yan-Ying Chen for sharing

her dataset. This work was supported in part

by MSIP/IITP [R0126-16-1108, R0101-16-0176] and

MSIP/NRF (No. 2013-067321).

References

[1] X. Chen, B. Zhou, Y. Guo, F. Xu, and Q. Zhao.

Structure guided texture inpainting through multi-

scale patches and global optimization for image

completion. Science China Information Sciences,

57(1):1–16, 2013.
[2] Y.-Y. Chen, W. H. Hsu, and H.-Y. M. Liao.

Discovering informative social subgraphs and

predicting pairwise relationships from group photos. In

Proceedings of the 20th ACM international conference

on Multimedia, pages 669–678. ACM, 2012.
[3] Y.-I. Chiu, R.-Y. Hsu, and C.-R. Huang. Spatial

face context with gender information for group photo

similarity assessment. In Pattern Recognition (ICPR),

8



Discriminative Subgraphs for Discovering Family Photos 9

Chen’s data set: 77 subgraphs by our method

gSpan subgraphs 78 100 500 1,000 10,000 · · · 111,764 · · · 560,177

# of common subgraphs 16 17 21 23 36 · · · 54 · · · 59

Our data set: 85 subgraphs by our method

gSpan subgraphs 85 100 500 1,000 10,000 · · · 84,713 · · · 326,034

# of common subgraphs 20 21 25 26 29 · · · 50 · · · 59

Tab. 4 The number of common subgraphs between gSpan and ours in Chen’s and our data set.

dimension 76 100 1,000 5,000 10,000

gSpan + DF (1) 283 283 189 82 30

gSpan + DF (2) 53 52 39 37 30

Ours 26 N/A

dimension 90 100 1,000 5,000 10,000

gSpan + DF (1) 351 351 236 163 43

gSpan + DF (2) 62 62 50 48 43

Ours 28 N/A

Tab. 5 This table shows the number of query images that are

represented by the null vector in Chen’s and our extended data.

2014 22nd International Conference on, pages 2673–

2678. IEEE, 2014.
[4] Y.-I. Chiu, C. Li, C.-R. Huang, P.-C. Chung, and

T. Chen. Efficient graph based spatial face context

representation and matching. In Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International

Conference on, pages 2001–2005. IEEE, 2013.
[5] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese.

Discovering groups of people in images. In Computer

Vision–ECCV 2014, pages 417–433. Springer, 2014.
[6] S. A. Cook. The complexity of theorem-proving

procedures. In ACM symposium on Theory of

computing, pages 151–158. ACM, 1971.
[7] A. C. Gallagher and T. Chen. Finding rows of people

in group images. In ICME, pages 602–605. IEEE, 2009.
[8] A. C. Gallagher and T. Chen. Understanding images

of groups of people. In CVPR, pages 256–263. IEEE,

2009.
[9] S.-M. Hu, F.-L. Zhang, M. Wang, R. R. Martin,

and J. Wang. Patchnet: A patch-based image

representation for interactive library-driven image

editing. ACM Trans. Graph., 32(6), Nov. 2013.
[10] C. Jiang, F. Coenen, and M. Zito. A survey of

frequent subgraph mining algorithms. The Knowledge

Engineering Review, 28(01):75–105, 2013.
[11] A. Krizhevsky. Learning multiple layers of features

from tiny images. Technical report, University of

Toronto, 2009.
[12] H. Li, W. Wu, and E. Wu. Robust interactive

image segmentation via graph-based manifold ranking.

Computational Visual Media, 1(3):183–195, 2015.
[13] D. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer

Vision, 60(2):91–110, 2004.
[14] A. C. Murillo, I. S. Kwak, L. Bourdev, D. Kriegman,

and S. Belongie. Urban tribes: Analyzing group photos

from a social perspective. In Computer Vision and

Pattern Recognition Workshops (CVPRW), 2012 IEEE

Computer Society Conference on, pages 28–35. IEEE,

2012.
[15] A. Oliva and A. Torralba. Modeling the shape of the

scene: a holistic representation of the spatial envelope.

IJCV, 2001.
[16] K. Shimizu, N. Nitta, Y. Nakai, and N. Babaguchi.

Classification based group photo retrieval with bag of

people features. In ACM International Conference on

Multimedia Retrieval, page 6. ACM, 2012.
[17] H. Shu, A. Gallagher, H. Chen, and T. Chen.

Face-graph matching for classifying groups of people.

In Image Processing (ICIP), 2013 20th IEEE

International Conference on, pages 2425–2429. IEEE,

2013.
[18] P. Singla, H. Kautz, J. Luo, and A. Gallagher.

Discovery of social relationships in consumer photo

collections using markov logic. In Computer Vision and

Pattern Recognition Workshops, 2008. IEEE Computer

Society Conference on, pages 1–7. IEEE, 2008.
[19] Z. Song, M. Wang, X.-s. Hua, and S. Yan. Predicting

occupation via human clothing and contexts. In

Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 1084–1091. IEEE, 2011.
[20] K. Sparck Jones. A statistical interpretation of term

specificity and its application in retrieval. Journal of

documentation, 28(1):11–21, 1972.
[21] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf.

Deepface: Closing the gap to human-level performance

in face verification. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

2014.
[22] M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P.

Kriegel, A. Smola, L. Song, P. S. Yu, X. Yan, and

K. M. Borgwardt. Discriminative frequent subgraph

mining with optimality guarantees. Statistical Analysis

and Data Mining: The ASA Data Science Journal,

3(5):302–318, 2010.
[23] G. Wang, A. Gallagher, J. Luo, and D. Forsyth. Seeing

people in social context: Recognizing people and social

relationships. In Computer Vision–ECCV 2010, pages

169–182. Springer, 2010.
[24] M. Wang, Y.-K. Lai, Y. Liang, R. R. Martin, and S.-

9



10 Changmin Choi et al.

M. Hu. Biggerpicture: data-driven image extrapolation

using graph matching. ACM Transactions on Graphics

(TOG), 33(6):173, 2014.
[25] X. Yan and J. Han. gspan: Graph-based substructure

pattern mining. In Data Mining, IEEE International

Conference on, pages 721–724. IEEE, 2002.
[26] T. Zhang, H. Chao, C. Willis, and D. Tretter.

Consumer image retrieval by estimating relation tree

from family photo collections. In ACM International

Conference on Image and Video Retrieval, pages 143–

150. ACM, 2010.
[27] W. Zhao, R. Chellappa, P. J. Phillips, and

A. Rosenfeld. Face recognition: A literature survey.

ACM Comput. Surv., 35(4), 2003.

Changmin Choi is in preparation

for a start-up company. He received a

M.S. degree from School of Computing

at KAIST, and a B.A. degree from

Business School at Hanyang Univ. His

research interest is understanding group

photos in social media.

YoonSeok Lee is a M.S. student in

School of Computing at KAIST, South

Korea and he received a B.S. degree

in Computer Science from KAIST in

2014. His research interest lies in image

classification, image representation and

hashing techniques.

Sung-Eui Yoon is currently an

associate professor at KAIST. He

received the B.S. and M.S. degrees

in computer science from Seoul

National University in 1999 and 2001,

respectively. His main research interest

is on designing scalable graphics, image

search, and geometric algorithms.

He gave numerous tutorials on proximity queries and

large-scale rendering at various conferences including ACM

SIGGRAPH and IEEE Visualization. Some of his work

received a distinguished paper award at Pacific Graphics,

invitations to IEEE TVCG, an ACM student research

competition award, and other domestic research-related

awards. He is a senior member of IEEE, and a member of

ACM and KIISE.

10


