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초 록

사람은 경험적으로 얻은 시청각적 사건에 관한 사전 지식에 의거하여 청각적 정보와 관련된 장면을 떠올릴

수 있다. 본 논문에서는 이와 같은 사람의 능력을 딥 러닝 모델에 모방하여 비디오 인페인팅 품질을 향상

시키는 방법에 대해 탐구한다. 전술한 시청각적 사전 지식을 구현하기 위해, 시각 및 청각 정보 간의 연관

성을 학습하는 시청각 네트워크를 학습시킨다. 이 시청각 네트워크를 안내자로 활용하여, 비디오 인페인팅

네트워크에게 시청각적 일관성에 대한 사전 지식을 전달하게 된다. 앞서 언급한 사전 지식은 본 연구에서

새로이 제시하는 두 가지 손실 함수인 시청각 어텐션 손실 함수 및 시청각 의사-클래스 일관성 보존 손실

함수를 통해 전달된다. 두 손실 함수를 통해 비디오 인페인팅 네트워크는 손상된 프레임이 주어진 소리와 높

은 일관성을 보이도록 복원시킨다. 본 연구에서 제시한 방법은 다양한 종류의 시청각 이벤트에 대한 비디오

프레임을 잘 복원하는 것은 물론, 소리를 발생시키는 물체가 부분적으로 가려진 비디오 프레임을 복원하는

경우 더욱 효과적이다.

핵 심 낱 말 딥 러닝, 시청각 학습, 시청각적 연관성, 시청각 네트워크, 심층 비디오 인페인팅

Abstract

Humans can easily imagine a scene from auditory information based on their prior knowledge of audio-

visual events. In this paper, we mimic this innate human ability in deep learning models to improve

the quality of video inpainting. To implement the prior knowledge, we first train the audio-visual

network to learn the correspondence between auditory and visual information. Then, the audio-visual

network is employed as a guider that conveys the prior knowledge of audio-visual correspondence to the

video inpainting network. This prior knowledge is transferred through our proposed two novel losses

– audio-visual attention loss and audio-visual pseudo-class consistency loss – that further improve the

performance of the video inpainting network. These two losses encourage the inpainting result to have

a high correspondence to its synchronized audio. Experimental results demonstrate that our proposed

method can restore a wider domain of video scenes and is particularly effective when the sounding object

in the scene is partially blinded. This thesis is based on the author’s original paper [1].

Keywords Deep learning, Audio-visual learning, Audio-visual correspondence, Audio-visual network,

Deep video inpainting
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Chapter 1. Introduction

Audio-Visual Network 
(AV-Net) 

Video Inpainting Network 
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frame
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Figure 1.1: Overview of our proposed method. We use the audio-visual network (AV-Net) as a guider

of the video inpainting network (VI-Net) that conveys the prior knowledge of audio-visual relationship.

The prior knowledge is conveyed through our proposed two audio-visual losses to further improve the

performance of the video inpainting network.

Imagine hearing the sound of a bird singing. You may come up with an image of a bird flying

in the sky or sitting on top of a tree. In this fashion, humans can easily visualize a scene related to

incoming auditory signals [2]. This natural behavior is empowered by the prior knowledge of semantic

mapping between the visual and auditory modalities learned from ubiquitous audio-visual events around

us. This ability to connect the dots between two modalities allows humans to restore videos better whose

spatial information is corrupted. In other words, even though the video is partially blinded, humans can

easily imagine what is happening in missing parts by listening to the corresponding audio. Based on

this intuition, our work tries to mimic this human ability in a deep learning model to better solve the

following video inpainting problem: a task of filling missing visual regions in a video, guided by the audio

signal. Hence, our goal can be articulated into answering the following question: can machines also learn

to restore the visual scene in a video by hearing its corresponding sound?

The natural decision for this question might be combining the encoded audio with visual feature

maps to make the audio act as conditional information. However, this approach has not always been

successful, because the detailed semantic information within the audio often fails to be fused into vision

domain directly [3]. Specifically, this strategy is available if the diversity of expected audio is limited,

such as speech corpus [4, 5]. Nonetheless, it often fails to elicit low-level semantic information, such as

gender and age within the speech-voice, making the audio signals negligible [6].

To achieve the goal while circumventing such issue, we exploit the audio-visual correspondence

learned by the audio-visual network (AV-Net) [3] to train the video inpainting network (VI-Net).

The AV-Net learns to generate an audio-visual attention map that highlights visual regions corresponding

to the synchronized audio, and to capture the pseudo-class of each modality within the audio-visual pair.

In this manner, the AV-Net learns the semantic relationship within the audio-visual pairs in a self-

supervised manner, without labeled videos. There have been previous attempts to use this audio-visual
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correspondence for several of their unique downstream tasks, such as sounding object localization [3, 7]

and sound source separation [8, 9]. Unlike these attempts, we aim to leverage the prior knowledge of

audio-visual correspondence for the video inpainting task, which has not been explored yet.

As shown in Fig. 1.1, the AV-Net guides the VI-Net to use the corresponding audio signal as an

important cue for restoring the corrupted frame. Given the prior information of audio-visual correlation

that AV-Net provides, we propose two novel audio-visual losses to distill the prior knowledge to the VI-

Net: audio-visual attention loss and pseudo-class consistency loss. Audio-visual attention loss

encourages the VI-Net to minimize the disparity of the audio-visual attention maps between the original

and the inpainted frame. By doing so, the VI-Net solely focuses on restoring areas corresponding to

the sounding object, making the inpainted result semantically more accurate. Audio-visual pseudo-

class consistency loss is designed to indicate that visual and audio information from the same video

should belong to the identical class. Using auxiliary classifiers, we encourage the VI-Net to learn that

the visual features of inpainted frames and the synchronized audio features should belong to the same

pseudo-classes. This audio-guided class consistency information can further enhance the video inpainting

performance.

In summary, this study proposes a method that utilizes the audio signal for the video inpainting

task. We initially train the AV-Net in a self-supervised manner to implement the prior knowledge of

the audio-visual relationship. This knowledge from the AV-Net is transferred to the VI-Net with two

proposed losses, making the inpainted frame more realistic and semantically accurate. In other words,

our contributions are as follows:

• For enhancing the video inpainting quality, we propose a novel approach that utilizes the inherent

sound from the video itself (Ch. 4).

• Based on the pretrained AV-Net, we propose two novel losses – audio-visual attention loss and

pseudo-class consistency loss – that enable the VI-Net to utilize the inherent sound from a video

for restoring corrupted frames (Ch. 3, Ch. 4).

• Experimental results show that our approach is especially effective when restoring the frame whose

sounding object in the scene is partially blinded (Ch. 6).
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Chapter 2. Related Work

In this chapter, we briefly discuss three research domains relevant to our work: self-supervised

audio-visual learning, deep video inpainting, and audio-assisted visual synthesis.

2.1 Self-Supervised Audio-Visual Learning

Even when videos are unlabeled, the innate correspondence between audio and visual stream provides

useful supervision for audio-visual learning [2, 10]. This audio-visual correspondence has shown to be

useful in designing the contrastive learning objectives [7, 11]. Learned audio-visual features have also

been applied on several downstream tasks, such as sounding object localization [3, 7], speech or sound

source separation [8, 9], and cross-modal synthesis guided by the modality of one another [12, 13, 14].

On the other hand, our work exploits audio-visual self-supervision for one of the visual restoration

tasks – video inpainting – in order to restore highly semantic information in missing regions of video

frames. We utilize this self-supervision to let the AV-Net learn the deep relationship between audio and

visual feature, which will be further conveyed to support the better training of the VI-Net.

2.2 Deep Video Inpainting

Video inpainting is a challenging problem aiming to restore missing regions in consecutive frames

with spatially and temporally plausible contents [15]. Recent methods have achieved significant improve-

ments via deep learning by using encoder-decoder based architectures [16]. Among these learning-based

methods, flow-based approaches utilize optical flow as a prior constraint for pixel-level propagation [17]

or jointly train flow prediction and frame completion network to alleviate the blurriness [18, 19]. In-

stead of relying on additional prior, several studies introduce novel architectures [20, 21], attention

modules [22, 23], or adversarial mechanisms [24] to ensure the spatio-temporal coherence.

Despite the success brought by these methods, little attention has been given to employing the

audio signal, which is the innate correspondence prior of a video. Our work takes a pioneering step to

demonstrate a generic method of utilizing audio signals to the video inpainting problem.

2.3 Audio-Assisted Visual Synthesis

Audio has been used as an effective prior for synthesizing image or video, but in limited application

domains. Wan et al. [25] propose a GAN-based image generation framework that is conditioned by

an audio feature vector but requires a human-labeled dataset. Jamaludin et al. [4] and Koumparoulis

et al. [5] utilize audio features to synthesize a talking face of the given speech-voice and the speaker’s

identity. Meishvili et al. [6] design face super-resolution framework guided by gender and age information

implicitly conveyed from the speech-voice.

Compared to these previous approaches, our work has the following distinctions. While [25] used

3



human-labeled videos to obtain semantic knowledge, our work utilizes an audio-visual relationship learned

from the self-supervised training procedure. We also consider a broader scope of audio-visual events

occurring in the real world than managing only the video of talking faces as in [4, 5, 6].
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Chapter 3. Training the Audio-Visual Network

In this chapter, we review how the audio-visual network (AV-Net) embeds the prior knowledge of

audio-visual events given diverse audio-visual pairs as input. The AV-Net first learns to quantify the

coherency between the auditory information and the visual region within the video frame into a matrix

called audio-visual attention map. This goal is achieved by training the AV-Net with an audio-visual

correspondence task [3, 26], which is predicting whether the audio-visual pair belongs to the same video

(Sec. 3.1). Leveraging the feature alignment effect from the previous task, the AV-Net accordingly learns

to predict the pseudo-class of extracted audio and visual features by training the auxiliary classifier of

each modality (Sec. 3.2). The overall structure of training the AV-Net is illustrated in Fig. 3.1.

Throughout this chapter, let X = {(ai, vj) | 1 ≤ i ≤ N, 1 ≤ j ≤ N} denote a set of audio-visual pairs

such that a pair (ai, vj) is sampled from the N number of videos. Here, a and v each represents the audio

signal and the video frame. Given the pair (ai, vj) ∈ X as input, we aim to obtain the prior information

in two forms: the audio-visual attention map and the pseudo-class of input from each modality. The

former considers a pair (ai, vj) where ai and vj are each randomly sampled from N videos, while the

latter considers only a pair drawn from the same video (i.e., i = j). Note that our training methodology

of AV-Net refers to [3] and [27].

3.1 Audio-Visual Attention Map

As shown in Fig. 3.1, the AV-Net includes two convolutional sub-networks for feature extraction. Let

(ai, vj) be an audio-visual pair that is arbitrary sampled from the aforementioned dataset X . The audio

network fA takes a log-scale mel spectrogram ai as an input and produces audio feature vector denoted

as fA(ai) ∈ Rc. Furthermore, the visual network fV extracts the feature map of fV(vj) ∈ Rh×w×c from

the input video frame vj . Note that h × w and c denote spatial and channel dimensions, respectively.

Based on these two feature maps, we obtain the similarity map of Rh×w by computing the scalar product

between fA(ai) and fV(vj) along the channel dimension for each of the spatial units within fV(vj). Note

that both fA(a) and fV(v) are L2 normalized to measure the cosine similarity from the scalar product.

Then, the similarity map would describe how strongly each spatial location of fV(vj) reacts to the audio

descriptor fA(ai). Finally, we apply a sigmoid operation to this similarity map to obtain the audio-visual

attention map M(ai, vj) ∈ Rh×w.

Intuitively, the audio-visual attention map M(ai, vj) would show high attention value in the area

where the given audio ai and the video frame vj semantically correspond. Based on this intuition,

the objective of training the AV-Net can be formulated into solving a binary classification problem,

minimizing the loss function as follows:

Latt = BinaryCrossEntropy (ycorr, GlobalMaxPooling(M(ai, vj))) , (3.1)

where ycorr denotes a binary label that indicates whether the components of the audio-visual pair comes

from the same video or not (i.e., ycorr = 1 if i = j, and ycorr = 0 otherwise). By minimizing the

5
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Figure 3.1: The schematic of training the audio-visual network (AV-Net). The AV-Net is alter-

nately trained with attention-learning task Latt (Sec. 3.1) and pseudo-label classification task

Lcls (Sec. 3.2). Attention-learning task can be articulated into a binary classification task, which is

predicting whether the audio-visual pair comes from the same video. Pseudo-labels of audio-visual pairs

are determined by the clustering result over the set of object representations O = {o1, o2, · · · , oN}, de-

rived from refining visual features with object masks. These pseudo-labels are utilized for optimizing the

AV-Net with the classification task.

binary cross-entropy between ycorr and the largest value of the attention map M(ai, vj) over the spatial

dimension h × w, the network is encouraged to maximize the attention values in regions that match to

the given audio ai while suppressing them when audio-visual pairs do not match. Further, we note that

positive audio-visual pairs (where i = j) and mismatching pairs (where i 6= j) are sampled in equal ratio

when training the AV-Net with the objective of Eq. 3.1.

3.2 Pseudo-Class Prediction

After training the AV-Net with the attention learning objective (Eq. 3.1), both audio and visual

features are substantially aligned in the embedding space. This allows us to train a pseudo-class predictor

(i.e., pseudo-label classifier) for each modality. Furthermore, pseudo-labels of both audio and visual

features are additionally adopted to stabilize the training of the AV-Net. The detailed procedure of

extracting pseudo-labels will be described below.

For pseudo-class extraction, we note that only the positive audio-visual pairs are used. In other

words, we only consider the pairs satisfying i = j, which are (ai, vi) ∈ X . With the audio-visual attention

map M(ai, vi) from the input pair, we apply set threshold to obtain a binary mask mi ∈ {0, 1}h×w.

6



Accordingly, the true zone of mi reveals the sounding object, while the false zone blinds the irrelevant

backgrounds. Using this attention-based binary mask, we compute the object representation oi ∈ Rc

from the visual feature fV(vi) to pick out the area where the audio-visual event is present. In specific, oi

is gained by oi = GlobalAveragePooling (mi � fV(vi)), where the operator � denotes the channel-wise

Hadamard product. By masking out noisy and redundant information using the mask mi, oi contains

more compact and distinctive information than fV(vi). We finally perform a K-means clustering on the

set of object descriptors O = {o1, o2, · · · , oN} to assign each of them a pseudo-label corresponding to

the cluster to which it belongs. We emphasize that this clustering process is able to produce meaningful

results by leveraging the feature alignment effect from the training objective Latt and noise-free oi.

We append learnable linear classifiers to the end of each sub-network fA and fV , which predicts

pseudo-classes of the input. Using the pseudo-label of oi as a ground truth, the whole network is trained

to minimize the following classification objective:

Lcls = CrossEntropy (yp(oi), ŷA(ai)) + CrossEntropy (yp(oi), ŷV(vi)) , (3.2)

where yp(oi) represents the one-hot pseudo-label of oi. Moreover, ŷA(ai) and ŷV(vi) indicate the logit

vectors from the linear classifiers ŷA and ŷV given ai and vi, respectively. Consequently, after training

the network with Lcls, the AV-Net can predict pseudo-classes of audio and visual features by its auxiliary

classifiers.

The AV-Net is trained by attention-learning objective (Eq. 3.1) and pseudo-label classification task

(Eq. 3.2) in an alternate manner, as two objectives mutually improves the overall performance [28].

7



Chapter 4. Training the Video Inpainting Network

In this chapter, we describe a novel training methodology which uses the functionalities of the audio-

visual network (AV-Net). The AV-Net described in Ch. 3 is adopted to support the video inpainting

network (VI-Net) to capture the semantic cues from the audio signal. We provide details of two novel

losses derived from the AV-Net – audio-visual attention loss (Sec. 4.1) and pseudo-class consistency loss

(Sec. 4.2). Fig. 4.1 illustrates the overview of the proposed framework.

Throughout this chapter, we assume there is a pair of a corrupted video frame v̄ and its ground

truth frame v. Then, the VI-Net returns the inpainted frame v̂, given the corrupted frame v̄. Note that

weights of the pretrained AV-Net are frozen while training the VI-Net.

Audio-Visual Network

Video Inpainting Network

Encoder Decoder

concatenate

Bottleneck 
feature 

Compute 
Audio-Visual 

Attention

Input 
Frame 

Inpainted 
Frame 

GT 
frame 

Audio

Visual Classifier

Audio Classifier

Figure 4.1: The overall schematic of training the video inpainting network (VI-Net) guided by the

audio-visual network (AV-Net). The prior knowledge which the AV-Net has learned is transferred

to the VI-Net through our audio-visual attention loss LAV
att (Sec. 4.1) and audio-visual pseudo-

class consistency loss LAV
cls (Sec. 4.2). Both losses encourage the VI-Net to recover the frame whose

content has high correspondence to the synchronized audio. Audio-visual attention loss is defined

as a difference between the attention map of the inpainted frame M(a, v̂) and that of the ground truth

frame M(a, v). Audio-visual pseudo-class consistency loss supports the visual contents to be class-

consistent ŷV(v̂) to the pseudo-class of the concantenated audio feature ŷA(a). Components with dotted

line indicates that their weights are frozen during training time.
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4.1 Audio-Visual Attention Loss

We exploit the ability of AV-Net to localize the sounding object in order to design our novel audio-

visual attention loss. The audio-visual network takes video frame v and its paired audio a as inputs and

generates a highly responsive attention map M(a, v) in the area matching with the given audio a. In

the same way, the attention map M(a, v̂) can be obtained by replacing v with v̂. The key idea is that if

the spatial contents of the audio-visual event are successfully recovered in v̂, the attention maps M(a, v̂)

and M(a, v) should be similar. Otherwise, M(a, v̂) would be vastly different from M(a, v), especially in

the area where the audio-visual event takes place.

From the investigation above, we observe that minimizing the difference between the two aforemen-

tioned attention maps would reduce the disparity between v and v̂. Hence, we propose the following

audio-visual attention loss:

LAV
att =

1

hw
‖M(a, v)−M(a, v̂)‖22 , (4.1)

where h and w are height and width of M(·, ·), respectively. Eq. 4.1 indicates a mean squared error

between two attention mapsM(a, v) andM(a, v̂). Thus, this objective encourages the VI-Net to complete

the corrupted frame in a way such that the audio-visual attention map M(a, v̂) of the inpainted frame is

similar to the attention map M(a, v) of the ground truth frame. As a result, VI-Net can better restore

the missing part of the sound-salient regions by matching their feature similarities to the synchronized

audio. Hence, the inpainting network can better restore the missing part of sound-salient areas by filling

it with contents or textures that actively reacts to the given audio feature. This property cannot be

found in common reconstruction losses (e.g., L1 loss) which ignore additional cues from the audio.

4.2 Audio-visual pseudo-class consistency loss

To further improve the performance of VI-Net, we additionally guide it with the class-consistency

information between the audio and video frame inputs. The audio and visual information from a syn-

chronized video should semantically belong to the same class. Hence, by learning that the restored frame

v̂ should belong to the same class as the corresponding audio a, the VI-Net can better reconstruct v̂ such

that it is more similar to the ground truth frame v.

We inject the audio information to the VI-Net by concatenating the audio feature fA(a) to the

bottleneck feature from the encoder of the VI-Net (the upper part of Fig. 4.1). Note that we broadcast

the audio feature fA(a) to the spatial dimension of the bottleneck feature before the concatenation.

As the pretrained AV-Net can already predict the pseudo-class of the audio a, we set this as a

guideline to determine whether the inpainted frame v̂ has coherent content. Therefore, we design the

audio-visual pseudo-class consistency loss as follows:

LAV
cls = CrossEntropy (ŷA(a), ŷV(v̂)) , (4.2)

where ŷA(a) and ŷV(v̂) denote the logit vectors from the linear classifiers given a and v̂, respectively.

Note that the linear classifiers are already pretrained as parts of the AV-Net. Audio-visual pseudo-class

consistency loss guides the VI-Net to synthesize a frame v̂ that is class-consistent with the synchronized

audio a.
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4.3 Total loss

To train the VI-Net, we use the final loss as follows:

L = λL1
LL1

+ λadvLadv + λAV
att LAV

att + λAV
cls LAV

cls . (4.3)

LL1
indicates the sum of L1 losses computed for missing and valid region, which are individually normal-

ized by the number of corresponding pixels. Ladv is the adversarial loss from Temporal PatchGAN [24],

which enhances the spatio-temporal reality of synthesized video frames. Note that these two losses are

borrowed from [22], which is our baseline VI-Net. The VI-Net is optimized jointly with our proposed

audio-visual losses LAV
att and LAV

cls . Hence, the network learns to minimize the audio-visual consistency as

well as the visual difference. The weights for each loss are empirically set as follows: λL1 = 1, λadv = 0.01,

λAV
att = 2, and λAV

cls = 1.
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Chapter 5. Experimental Setup

5.1 Dataset and Preprocessing

Datasets. We evaluate the effectiveness of our method on two video datasets with audio-visual data

pairs: AVE [11] and MUSIC-Solo [8] dataset.

• AVE dataset contains 4,113 video clips covering 29 categories of diverse real-life audio-visual events.

Here, we examine whether our method enhances the performance on restoring videos of diverse

events. We follow the official split of AVE dataset whose number of train/validation/test set is

3312/401/402.

• MUSIC-Solo dataset contains 493 video clips with 11 categories that exclusively cover solo per-

formances of different musical instruments. This dataset is employed to evaluate the transferability

of our methods on narrower audio-visual contexts. We randomly split MUSIC-Solo dataset into

343/50/100 for each train/validation/test set since there is no designated split.

Moreover, we evaluate our methods on two types of maskings: I-mask and S-mask.

• I-mask irregularly blinds the pixels with random strokes and shapes. We adopt the subset of

NVIDIA Irregular Mask Dataset [29]. For testing, we randomly pick three I-masks whose blinding

ratio is 20.0%, 27.7%, and 28.4%, each. Note that I-masks are adopted for evaluating the general

performance of the video inpainting network.

• S-mask is designed to blind the regions which corresponds to the sounding object. Thus, with S-

masks, we evaluate whether the video inpainting network can recover these salient regions that are

partially deteriorated. We collect S-masks by eroding1 the object mask mi mentioned in Sec. 3.2

until the spatial area of the masking covers about 20% of the image. This ratio refers to the

approximate proportion of the region that the sounding object occupies in the video frame.

Preprocessing. Given a video clip of arbitrary length, we extract video frames at 8 fps and resample

its mono-channel audio at 16 kHz. Then, the video frame is resized to the spatial size of 256× 256 and

then randomly cropped (for training) or resized (for testing) into 224× 224. The synchronized audio

is sampled by retrieving a 1-second segment whose midpoint of the segment corresponds to the given

frame. The audio segment is converted to the log-scale mel spectrogram2 with 0.01-second window size,

half-window hop length, and 80 mel bins, finally treated as a single-channel matrix with the spatial

dimension of 201× 80.

1We implement this process by using erode method in opencv-python package.
2We implement this process by using melspectrogram method in librosa package.
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5.2 Implementation Details

The Audio-Visual Network. We follow [3, 27] to implement the Audio-Visual Network (AV-Net).

For visual and audio sub-networks fV and fA, we use ResNet-18-based architectures as in [27]. In detail,

we change the stride of the first convolutional layer in the last residual block from 2 to 1 for getting a

feature map with a larger spatial size of 14× 14. Furthermore, the input channel of the first convolutional

layer in the audio sub-network is modified to 1 for processing the input of a single-channel spectrogram.

We also note that both sub-networks are initialized with ImageNet-pretrained weights. As both sub-

networks are simple variants of ResNet-18, the channel dimension of their output is 512. We also note

that both sub-networks are initialized with ImageNet-pretrained weights. Thus, the visual sub-network

produces the feature map of R14×14×512, while the audio sub-network gives the vector of R512 from a

pooled feature map. To compute the attention between features from two modalities, we compress the

channel dimension of the visual feature map by 1× 1 convolution, resulting in R14×14×128. Similarly, we

use fully connected layers for projecting the audio feature vector into 128-dimension. The audio-visual

attention map is finally computed between these two compressed representations.

Visual and audio classifiers in the AV-Net are individually implemented by a fully connected layer

which produces a logit vector by getting the original representation of each modality. Note that these

linear classifiers are re-initialized to random weights every time after K-means clustering is conducted.

Video inpainting baseline. We adopt one of the state-of-the-art architectures, the Spatial-Temporal

Transformer Network (STTN) [22] as our baseline. The major component of this network is a transformer

block that computes the similarity between all of the spatio-temporal patches within the encoded frame

feature. This ensures the spatio-temporal consistency of the inpainted contents by guiding the network

when and where to attend among consecutive input frames.

As our major interest lies in inpainting videos with audio-visual events, our choice of video dataset

is different from the original work [22]. Therefore, we obtain our baseline by training the STTN with

the aforementioned datasets from scratch without the audio signals. We fully reproduce the identical

architecture, referring to its official implementation3.

Training details. To train the AV-Net, we adopt Adam optimizer with the learning rate of 5e-5 for

training the network with AVE dataset and 1e-4 for MUSIC-Solo dataset. The batch size is set to 32 for

both datasets. Furthermore, we set the threshold value of 0.07 to obtain the binary mask while collecting

object representations. The number of clusters is set to 10 for extracting pseudo labels from K-means

clustering. While training the AV-Net for 4 epochs total, the learning rate is decayed by 0.1 after 2

epochs. On the other hand, for training VI-Net, the weights of pretrained AV-Net are frozen in training

time. In the experiments with AVE dataset, we train the VI-Net from randomly initialized weights.

For the AVE dataset, we train the VI-Net using Adam optimizer with the initial learning rate of 1e-4

decayed by 0.1 for every 100k iterations for a total of 350k iterations. Furthermore, for MUSIC-Solo

dataset, due to its lacking of training data, we fine-tune the VI-Net pretrained on the AVE dataset using

Adam optimizer for a total of 100k iterations with the learning rate of 1e-5 for first 50k iterations, and

1e-6 for the remaining iterations. The batch size is set to 8 for both datasets.

3The official source code of the STTN in GitHub: https://github.com/researchmm/STTN
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Chapter 6. Result

6.1 Evaluation Metrics

The quantitative result is reported using three widely-used metrics: PSNR [18], SSIM [30], and video-

based Fréchet Inception Distance (VFID) [24]. In detail, PSNR and SSIM are standardized metrics for

assessing the quality of visually synthesized material. VFID has been recently employed to quantify the

perceptual distance between two sets of video features. To compute VFID, video features are extracted

using a pretrained I3D network [31] to compute VFID following [22, 24].

6.2 Analysis and Discussion

Method I-mask S-mask

Audio LAV
att LAV

cls PSNR↑ SSIM↑ VFID↓ PSNR↑ SSIM↑ VFID↓

Baseline 7 7 7 30.76 93.45 3.549 26.58 91.93 5.553

+ Ours 3 7 3 30.81 93.55 3.356 26.83 92.21 5.305

+ Ours 3 3 7 30.94 93.61 3.273 27.16 92.47 5.271

+ Ours 3 3 3 31.18 93.65 3.184 27.32 92.69 4.961

Table 6.1: Quantative evaluation and ablation study of applying our method on AVE dataset with

two different types of masks. ↑ indicates that higher is better and ↓ means that lower is better.

Method I-mask S-mask

Audio LAV
att LAV

cls PSNR↑ SSIM↑ VFID↓ PSNR↑ SSIM↑ VFID↓

Baseline 7 7 7 29.49 93.85 4.316 26.47 91.88 5.706

+ Ours 3 7 3 29.60 93.84 4.191 26.95 92.38 5.205

+ Ours 3 3 7 29.66 93.87 4.221 27.05 92.40 5.194

+ Ours 3 3 3 29.68 93.84 4.092 27.12 92.53 4.929

Table 6.2: Quantative evaluation and ablation study of applying our method on MUSIC-Solo dataset

with two different types of masks. ↑ indicates that higher is better and ↓ means that lower is better.

We test our method on 4 different experimental setups derived from the combinations of video

and mask datasets mentioned in Sec. 5.1. Table 6.1 shows that adopting our proposed audio-visual

objectives outperforms the visual-only baseline on AVE dataset for all suggested metrics. As shown in

Table 6.2, our method also performs substantially well on the MUSIC-Solo dataset with video scenes

strictly related to musical instruments. On the MUSIC-Solo dataset with I-masks, our methods show

very similar PSNR and SSIM scores compared to the baseline. However, under the same settings, our

method, especially the one using both LAV
att and LAV

cls , shows significantly lower VFID scores. In other

words, although our approach shows comparable results in terms of pixel-level difference, we observe a
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great improvement in terms of VFID which implies that ours can further improve the perceptual reality.

Performance improvements over the two different video datasets also show that our method is effective

not only in domain-specific videos such as MUSIC-Solo dataset but also in videos with a broader domain

such as AVE dataset. Ablation studies in Table 6.1 and 6.2 imply that our two losses harmoniously

give a positive impact on the inpainting quality, with the audio-visual attention loss showing higher

competitiveness.

One interesting point is that performance gains on S-masks are more significant than those on I-

masks. As shown in Table 6.1, on the AVE dataset masked with I-masks, our method of applying both

two losses improves the baseline PSNR and VFID by 0.42 and 0.365, respectively. On the same dataset

with S-masks, our method shows larger PSNR improvement of 0.74, and 0.592 in case of VFID. The same

tendency is shown in Table 6.2 on the MUSIC-Solo dataset. In the case of I-masks, PSNR and VFID

improvement shows each 0.19 and 0.224 compared to the baseline. On the other hand, improvements

are greater in the case of S-masks, showing PSNR improvement of 0.65 and 0.777 in terms of VFID

metrics. Recalling that S-masks are designed to mask audio-visual events, this tendency indicates that

our method indeed effectively restores those regions. This shows that the audio-visual correspondence

given as the prior information allows the video inpainting network to better restore regions corresponding

to the audio-visual events.

Fig. 6.1 demonstrates that our method produces more pleasing results for both types of masking.

While the baseline model produces blurry artifacts around the sounding object, our approach can syn-

thesize more plausible results. Particularly, when the audio-visual event is partially deteriorated (by

S-masks), the baseline fails to generate a realistic scene in the blinded area. In contrast, our method suc-

cessfully restores the frame with clearer and comprehensible contents, while preserving the audio-visual

coherency.
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Figure 6.1: Qualitative results of two samples from the AVE dataset blinded by I-masks (top) and

S-masks (bottom). While the baseline STTN shows more artifacts around the sounding object and

produces blurry contents, our method produces more realistic and clearer results with less artifacts.
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Chapter 7. Conclusion

In this paper, we investigate a novel approach to using the audio for video inpainting tasks by

employing audio-visual self-supervision. We adopt the audio-visual network to bridge the gap between

visual and audio modality, securing the correlation and classification capability. These capabilities guide

the video inpainting network to grab extra information from the synchronized audio via two novel losses

we propose – audio-visual attention loss and audio-visual pseudo-class consistency loss. Experimental

results on two different audio-visual datasets – AVE and MUSIC-Solo dataset – with two types of

masking – I-mask and S-mask – show that our approach improves the inpainting performance of the

video inpainting network compared to the baseline.

Since our work manages scenarios with a single sound source, future work can take a comprehensive

approach to complicated audio-visual scenes, such as scenes of multiple sounding objects. We believe

that our work paves the new avenue of using audio for other visual restoration tasks such as video

super-resolution and colorization.
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말씀을 전합니다.

긴 시간 동안 동고동락해오며, 항상 저에게 힘이 되어준 연재에게 고마운 마음을 전합니다. 항상 웃

음을 잃지 않도록 함께한 고등학교 친구들에게도 고마움을 전합니다. 마지막으로, 제 모든 것의 원동력이

되어주시고 저를 믿고 지켜봐주신 부모님과 누나에게도 감사함과 사랑의 마음을 전합니다. 항상 겸손하고,

타인에게 베풀며 힘이 될 수 있는 지혜로운 사람이 되겠습니다. 다시 한 번 감사드립니다.

김규연 올림.
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