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초 록

단순화된 동역학 모델은 보행 로봇이 모션을 생성할 때 계산적으로 덜 복잡하게 만드는 데 많이 사용된다.

하지만, 단순화된 동역학 모델에 특화된 충돌 회피에 대한 연구는 많지 않다. 우리는 이 문제에 기여하기 위

해 충돌 역전파 기반 장애물 회피 방법 (CBOA)을 제시한다. 우리의 방법은 궤적을 최적화하고 장애물과의

충돌을 방지하기 위해 충돌 비용의 역전파를 사용한다. 실험에 따르면 CBOA는 이전의 연구에 비해 경로의

충돌 가능성을 최대 15.89배 줄일 수 있다.

핵 심 낱 말 충돌 회피, 단순화된 동역학, 경로 최적화

Abstract

Simplified dynamics models have been widely used to make motion planning for legged robots less

computationally complex. On the other hand, there hasn’t been much study on collision avoidance for a

simplified dynamics model. We present the collision-backpropagation based obstacle avoidance method

(CBOA) to contribute to this problem. Our method uses the gradient flow of the collision cost to optimize

the trajectory and prevent collisions with obstacles. According to our experiment, the CBOA can reduce

planned trajectory collisions by up to 15.89 times compared to a previous implicit collision avoidance

technique.

Keywords Collision avoidance, Simplified dynamics, Trajectory optimization
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Chapter 1. Introduction

1.1 Introduction

A legged robot received much attention because it could traverse uneven terrain. To plan a feasible

motion without jerky movements for this legged robot, it is crucial to take into account its dynamics.

However, planning is time-consuming when rigid-body dynamics model or other complex dynamics model

are taken into account. All of the legs’ effects are taken into account in the rigid-body dynamics model,

which makes it complicated [1]. Recent studies on legged robots frequently omit the effects of legs in

order to simplify the dynamics models, such as the centroidal dynamics model [2–6] or the inverted

pendulum dynamics model [7].

By neglecting the effects of legs, a simplified dynamics model for trajectory planning utilizes end-

effectors without joints. Consequently, leg collision avoidance is frequently missed in simplified dynamics

models [2]. Leg collisions in complicated situations are still a problem, despite prior efforts to prevent

them by improving end-effector position [3–5].

We suggest the collision-backpropagation based obstacle avoidance method (CBOA) to prevent col-

lision with obstacles during trajectory optimization as a solution to this remained issue. We aim to

optimize the end-effector parameterized trajectory because many simplified dynamics models have end-

effector information. We employ backpropagation from the collision to the end-effector, i.e., CBOA, to

provide collision information to the end-effector.

We compared our approach to two cutting-edge legged robot trajectory planners: TOWR [2] and

edge-based collision avoidance method (EBCA) [3–5]. The EBCA is a method that deviates from direct

collision avoidance by positioning the contact point of end-effector away from the edges. In four settings

(Fig. 1.1), we compared the proportion of correctly generated trajectories to those without collisions.

As a consequence, our approach produces at best 15.89 times more collision-free trajectories than the

EBCA.

The main contribution of this paper is to focus on a simplified dynamics model and to take into

account leg and end-effector collisions.

1



Figure 1.1 The proposed method produces trajectory optimization in four different environments: (a-d)

stair, huddle, block, and bumpy terrains. Our approach successfully generates collision-free trajectories

with the aid of a gradient flow. The end-effector trajectory for every leg is depicted by a color line.
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Chapter 2. Trajectory optimization for a legged

robot utilizing a simplified dynamics model

Planning the trajectory of a legged robot frequently makes use of trajectory optimization methods [2–

5]. Trajectory planning for a legged robot needs to take constraints into account. As an example,

trajectory optimization takes into account dynamics to provide feasible motion, friction cones to prevent

the robot’s feet from slipping, and a contact schedule to produce gait patterns [2].

However, as the number of these constraints increases, trajectory optimization becomes significantly

more difficult to optimize. To reduce the complexity of trajectory optimization, prior works [2–5] simplify

a whole-body dynamics model to a simplified dynamics model. The centroidal dynamics model, which

disregards the effects of all legs, is one of the ways for simplifying dynamics models. As a result, dynamics

are calculated without knowledge of the legs using the base and end-effectors.

We need to provide constraints for a trajectory in terms of the parameters of the simplified dynamics

model, such as the position of end-effectors. For example, end-effectors should be within the kinematic

range to prevent violating joint limitations. However, in the previous work [2], no collision avoidance

method is parameterized with the end-effector.

The edge-based collision avoidance approach, which avoids collision using an end-effector [3–5],

does not take leg collision into account. We suggest the CBOA approach to take the leg collision and

end-effector collision into account.

3



Chapter 3. A collision-backpropagation method for a

simplified dynamics model

To avoid a collision, we need to measure the distance between each leg and the nearest obstacle. We

calculate the signed distance from a signed distance field, SDF (Fig 3.1b), given a point of a potential

collision, drawing inspiration from earlier works [8, 9]. We use a collision forward propagation from

the end-effector to calculate the position of the point of the potential collision. The collision forward

propagation method calculates the collision cost by using the kinematics of the robot (in Sec 3.2). The

collision cost is determined by the penalty function in the collision forward propagation step, which

provides margin distance to obstacles (in Sec 3.3). The input of the penalty function is the signed

distance. Then, we can utilize the collision backpropagation to calculate the gradient of the end-effector

(in Sec 3.4). Finally, trajectory optimization can perform collision avoidance using the collision cost and

gradient.

3.1 Collision checking method using a geometric approximation

We need to determine whether the obstacle penetrates the robot’s leg in order to check collisions. In

order to locate a probable collision point, known as the query point (Fig 3.1a), and determine the signed

distance from the SDF using the query point, we approximate the robot’s legs to collision spheres. The

signed distance from the query point to the closest obstacle is represented by the SDF. If the query point

is inside the obstacle, the signed distance has a negative value. We suppose that a collision happens if

the signed distance of the query point is less than the radius of the collision sphere.

This approach of checking for collisions is a productive way to use the SDF to prevent collisions.

Since the SDF is already computed prior to optimization, querying the signed distance only has an O(N)

complexity, where N is the total number of collision primitives.

3.2 Collision forward propagation to collision cost

As indicated by the orange arrows in Fig. 3.2, we can use collision forward propagation to obtain the

end-effector collision cost. As aforementioned, we make the simplified dynamics model check collisions

by assuming imaginary legs. The joint values θ of the legs are computed using the inverse kinematics

of the end-effector x. The relationship between the position of the end-effector and the joints should be

mapped by the inverse kinematics in a one-to-one correspondence. If joints are not determined, it is hard

to avoid collisions because the inverse kinematics cannot determine the legs’ shape only with the end-

effector position. We can suppose that a generally constructed legged robot has a unique solution [10].

After then, forward kinematics is used to determine the positions of collision spheres s.

4



(a) Visualization of robot and collision spheres

MIN 0 MAXNegative value Positive value

(b) Visualization of signed distance field

Figure 3.1 (a) An illustration of how the HyQ robot can visualize collision spheres. To check for collision,

we approximate the lower leg with yellow collision spheres. The query point for collision checking defines

the center of the collision sphere. (b) A signed distance field in the stair environment.
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(End-effector) (Joint values) (Sphere position) (Signed distance) (Collision cost)

IK FK SDF Penalty function

: Forward propagation
: Backpropagation

Figure 3.2 The relationship between the end-effector x and the collision cost P (ds) is depicted in

the figure. It is possible to calculate the collision cost during the forward propagation phase (orange

arrows). The rate of change of the cost P (ds) with respect to the end-effector x can be calculated in the

backpropagation process (green arrows).

3.3 Penalty function according to phase

If the cost uses the signed distance directly, the robot avoids obstacles without any margin. As a

result, we use a penalty function similar to the one [11] to provide a collision margin:

P (ds) =

s/3 (dm − ds)
3
, ds < dm

0, otherwise,
(3.1)

where s is the constant that denotes the effects the signed distance has on the cost, dm is the margin

distance, and ds is the signed distance.

According to the swing and stance phases, the penalty function P (ds) is computed. End-effectors

should be put on the ground during the stance phase. As a result, the stance phase’s z-axis must be

zero. On the other hand, dm does not have to be zero throughout the swing phase. In the stance phase,

we define dm = 0.01m with the exception of the z-axis, and dm = 0.03m in the swing phase.

3.4 Collision backpropagation to end-effector

Using collision-backpropagation based obstacle avoidance method (CBOA), we can calculate the rate

of change of the cost with respect to the end-effector after computing the cost using collision forward

propagation. As shown in the green arrows in Fig. 3.2, we use CBOA to compute the gradient for the

end-effector as follows:

∂P (x)

∂x
=
(
∂P (f)
∂f(s)

)(
∂f(s)
∂s(θ)

)(
∂s(θ)
∂θ(x)

)(
∂θ(x)
∂x

)
(3.2)

=
(
∂P (f)
∂f(s)

)
f ′(s)JsJ

−1
x (3.3)

=
(
∂P (f)
∂f(s)

)
f ′(s)JsJ

†
x. (3.4)
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If the collision cost is backpropagated, it will eventually become Eq. (3.2). Each gradient can be

obtained using well-known robotics definitions. We can calculate the gradient for ∂f(s)
∂s(θ) by using the

difference the signed distances between adjacent points. The Jacobian Js definition, which provides the

relationship between joint and sphere velocities, is ∂s(θ)
∂θ(x) . The Jacobian inverse Jx−1, which provides

the relationship between joint and end-effector velocities, is also known as ∂θ(x)
∂x . We can switch from

Eq. (3.2) to Eq. (3.3) using the definitions provided above. With a singular configuration, the Jacobian

inverse is incorrect. Furthermore, rather than being applied globally, the Jacobian inverse solution works

well locally. In order to solve these issues, we convert the Jacobian inverse J−1x into the Levenberg-

Marquardt method J†x [12] (Eq. (3.4)). Levenberg-Marquardt method J†x is JT (JJT + λ2I)−1~e. λ is a

non-zero damping constant, and ~e is a desired change in the position of an end-effector. This approach

yields a numerically stable condition and is robust close to a singularity configuration. We can make

collision-free trajectories using trajectory optimization with our method.

We can use the CBOA in the stance and swing phases, as seen in Section 3.3. The CBOAt in the

stance phase, the CBOAw in the swing phase, and the CBOAtw in the stance and stance phases are used

as a typescript to denote the different phases.
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Chapter 4. Results

4.1 Experimental setting

We conducted experiments in the four environments depicted in Fig. 1.1. In each setting, we

produced a random obstacle shape and assigned a target position. A legged robot used in the experi-

ments was a HyQ [13]. We compared our method to TOWR [2], a trajectory optimization method of a

legged robot with simplified dynamics, and the edge-based collision avoidance method [3–5] (EBCA).

TOWR is a trajectory optimization method for a legged robot with a simplified dynamics model that

does not consider a collision. EBCA is a method that includes a collision cost, which implicitly inhibits

a trajectory from colliding with obstacles during the stance phase. The collision cost is a differential

Gaussian function defined as
∑
e−d

2/2σ2

. d represents the distance between the contact point and the

nearest edge, and σ is the standard deviation. It is difficult to directly avoid collisions with the EBCA

using collision checking. In addition, this method is inapplicable to the swing phase because the EBCA

estimates the distance between the contact point and the nearest edge. For the sake of a fair comparison,

we employ EBCA and CBOAw.

4.2 Experiment results

The quantitative results are shown in Table 4.1. The Collision-free trajectory ratio indicates the

proportion of collision-free trajectories relative to the total number of planned trajectories. The total col-

lision ratio indicates the proportion of actual collisions relative to the total number of collision checking.

The optimization time is the mean optimization time of trajectory planning.

According to the collision-free trajectory ratio column, CBOAtw approaches outperform other meth-

ods. In particular, our methods generate 15.89 times more collision-free trajectories than the EBCA in

the huddle environments. Furthermore, applying the stance cost such as the EBCA in conjunction with

the CBOAw can improve collision avoidance performance.

As seen in the total collision ratio column, the CBOAtw methods have the least number of collisions

with obstacles. Even when using only the CBOAt approach, the CBOAt method outperforms the EBCA

by a maximum of 20.75 times.

Although our methods take more time than other methods, the performance significantly improves

thanks to our method’s precise collision avoidance ability. The CBOAt method has a lower optimization

time than the EBCA and has reasonable collision avoidance ability. The CBOAt or CBOAtw method

can be selected depending on whether collision avoidance quality or optimization time is important.

Even while our approaches take longer than other ways, the obstacle avoidance performance is much

better because of our precise collision avoidance. The CBOAt approach optimizes in less time than the

EBCA and has adequate collision avoidance capabilities. CBOAt or CBOAtw can be chosen based on

whether collision avoidance quality or optimization speed is more significant.

8



Table 4.1 Trajectory optimization methods were compared for four types of terrains. The edge-based

collision avoidance method (EBCA) in bumpy terrain is not performed since bumpy terrain has no edges.

The collison-backpropagation based obstacle avoidance (CBOA) is our method. The CBOAt refers to the

stance phase cost, the CBOAw refers to the swing phase cost, and the CBOAtw refers to the stance and

swing phases. We measure the ratio of collision-free trajectories among total trajectories, collision-free

trajectory ratio, and the ratio of actual collisions over the total collision checkings, total collision ratio.

The CBOAtw outperforms The EBCA up to 15.89 times in planning the collision-free trajectory.

Terrain Method Collision-free trajectory ratio (%) ↑ Total collision ratio (%) ↓ Optimization time (s) ↓

Stair

TOWR 13.04 40.02 2.03

EBCA 13.01 5.35 6.87
∗CBOAt 15.94 0.62 5.06

EBCA + ∗CBOAw 45.95 4.52 8.84
∗CBOAtw (ours) 88.06 0.0 10.27

Block

TOWR 26.47 49.16 1.83

EBCA 21.88 41.58 3.43
∗CBOAt 47.06 2.94 3.68

EBCA + ∗CBOAw 40.32 29.9 4.45
∗CBOAtw (ours) 85.29 0.8 6.05

Huddle

TOWR 2.63 51.55 1.85

EBCA 5.63 32.58 4.8
∗CBOAt 21.05 1.57 4.65

EBCA + ∗CBOAw 21.21 26.24 8.65
∗CBOAtw (ours) 89.47 0.0 11.96

Bumpy

TOWR 5.17 15.39 2.13
∗CBOAt 8.52 4.1 26.35

∗CBOAtw (ours) 57.98 2.33 34.8

∗ our method

4.3 Optimization success rate

The trajectories that were successfully optimized were used to calculate the experimental results in

Section 4.2. However, complexity issues, the non-convex nature of constraints, or costs can sometimes

cause optimization to fail. The optimization success ratio is shown in Table 4.2. Optimization success

does not imply a collision-free trajectory, but rather a trajectory that satisfies constraints whether or

not the collision cost is satisfied. Our methods have a higher optimization success ratio than those of the

EBCA. However, our method’s optimization success rates in a bumpy environment are poor. This may

be due to the fact that it is more challenging to avoid collisions in a rough environment. Notwithstanding,

our methods can generate trajectories in environments where EBCA cannot be applied.

9



Table 4.2 The table shows the optimization success ratio when adding the collision cost term. The

optimization success ratio indicates the optimizer finds the solution within the given time. Our approach

outperforms the edge-based collision avoidance method (EBCA).

Terrain Method Optimization success ratio (%) ↑

Stair
EBCA 89.78

CBOAtw (ours) 97.1

Block
EBCA 95.52

CBOAtw (ours) 100

Huddle
EBCA 95.95

CBOAtw (ours) 100

Bumpy
EBCA -

CBOAtw (ours) 50.22

10



Chapter 5. Conclusion

We present a backpropagation-based collision avoidance method for a legged robot expressed as a

simplified dynamics model. Our approach is intended for end-effector parameterized trajectory optimiza-

tion, such as a method using centroidal dynamics model. In comparison to earlier works, our method was

up to 15.89 times more likely to produce a collision-free trajectory. Nevertheless, our method takes longer

to generate a trajectory because of the collision cost computation. Future work can use a learning-based

method to shorten computation times.

The content written in this dissertation has been submitted to the ICCAS conference in 2022 and

is accpeted.
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