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Clothing image generation is a task of generating clothing product images from input fashion images of people
dressed. Results of existing GAN based methods often contain visual artifact with the global consistency issue.
To solve this issue, we split the difficult single image generation process into relatively easy multiple stages
for image generation process. We thus propose a coarse-to-fine strategy for the image-conditional image gen-
eration model, with a multi-stage network training method, called rough-to-detail training. We incrementally
add a decoder block for each stage that progressively configures an intermediate target image, to make the
generator network appropriate for rough-to-detail training. With this coarse-to-fine process, our model can
generate from small size images with rough structures to large size images with details. To validate our model,
we perform various quantitative comparisons and human perception study on the LookBook dataset. Com-
pared to other conditional GAN methods, our model can create visually pleasing 256 x 256 clothing images,

while keeping the global structure and containing details of target images.

1 INTRODUCTION

When we see pictures of celebrities, we often want
to know what clothes he or she wears and where we
can buy those clothes. For this, we first need to per-
form the image search with pictures of celebrity as
queries. However, results might contain irrelevant
images, fundamentally because pictures of celebrities
and cloth product images belong to different domains.
Generally, a picture of celebrities consists of a cloth-
ing object, that we are looking for, and unnecessary
regions such as background. A clothing product im-
age, however, contains only clothing objects them-
selves. This semantic and visual gap between two do-
mains can be obstacles for searching intended cloth-
ing product images. To avoid this, we utilize clothing
image generation.

In this paper, we define a clothing image genera-
tion as a task of creating clothing images (product im-
ages) from any input images of people dressed. The
generated images must contain an apparel-like object
with details consistent with the input images. The re-
sulting images must be realistic and visually plausi-
ble, as well (Figure 1).

Our problem of clothing image generating can be
approached in the perspective of image-conditional
image generation. In image-conditional image gener-

ation problem, the conditional Generative Adversarial
Network (GAN) (Mirza and Osindero, 2014; Good-
fellow et al., 2014) based approaches have shown re-
markable results (Pathak et al., 2016; lizuka et al.,
2017; Isola et al., 2017; Lassner et al., 2017; Ledig
et al., 2017; Zhu et al., 2017). In practice, however,
result images generated by GAN often contain visual
artifacts with a global consistency issue; objects in an
image are structurally collapsed (Goodfellow, 2016);
see Figure 3 (e). It can be worse in high-resolution
images (Arjovsky and Bottou, 2017; Arjovsky et al.,
2017).

To mitigate these artifacts, many studies have ap-
plied various computer vision techniques to GAN.
The coarse-to-fine strategy is one of the classical
approaches in computer vision (Szeliski, 2010) for
structured prediction, and GAN with coarse-to-fine
approaches have shown acceptable results, even when
generating a high-resolution image (Zhang et al.,
2016; Zhao et al., 2017; Denton et al., 2015; Karras
et al., 2017; Mathieu et al., 2015). These works have
split the difficult single image generation process into
easier multi-stages for the image generation process.
An image generation model with this strategy gen-
erates target images from smaller scale images with
rough structures and then gradually generates big-
ger scale images with details. As a result, these ap-
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Figure 1: Examples of clothing images generated by our model. (a) are fashion model images as input. (b) are product images

generated by our model conditioned on the input images (a).

proaches can avoid generating structurally collapsed
result images.

Unfortunately, previous studies (Zhang et al.,
2016; Zhao et al., 2017; Denton et al., 2015; Mathieu
et al., 2015) have used multiple pairs of generators
and discriminators for stages in order to implement
this strategy, causing an excessive amount of network
parameters.

Main contributions. In this paper, we propose
a novel image-conditional image generation model,
rough-to-detail conditional GAN, for clothing image
generation. Our model is designed to utilize the
coarse-to-fine approach to produce visually pleasing
clothing images in a high resolution. During network
training, our model progressively constructs a gener-
ator for a target image via adding decoder blocks se-
quentially (Section 3.3). In this way with only a single
pair of a generator and a discriminator, we can use
network parameters in a compact way, and thus al-
low to use a large minibatch size during optimization
for accurate gradients, resulting in high-quality im-
age generation (Salimans et al., 2016; Salimans et al.,
2018).

Compared to other conditional GAN models, re-
sult images generated by our model both look like re-
alistic and contain detailed apparel-like objects con-
sistent with the input images (Section 5.2). As a re-
sult, our result image achieves better performance in
quantitative evaluation with various metrics such as
RMSE, SSIM, and Recall @K (Section 5.1) as well as
human evaluation (Section 5.3).

2 RELATED WORKS

We review prior approaches that are directly re-
lated to our work.

2.1 Generative Adversarial Network

Generative Adversarial Network (GAN) (Goodfellow
et al.,, 2014), as an unsupervised learning method,
learns the mapping from a latent space Z to a target
data distribution. If the target data distribution of in-
terest is the image, this framework takes an arbitrary
latent vector z € Z as input and maps the input to a
point as an image on the target distribution. A typical
GAN is composed of a generator G and a discrimi-
nator D. While D learns to distinguish whether the
image y or G(z) is real or not, G learns to generate a
realistic image G(z) that is hard to identify by D.

Generating a user-intended image, however, is a
difficult problem, because we do not know how z is
mapped to the image that the user intends to gener-
ate. For finding the appropriate z, we should exhaus-
tively explore the vector space of z, then it becomes
an expensive and impractical optimization problem.
To control the image generation process for a user to
generate an intended image, the conditional GAN is
proposed (Mirza and Osindero, 2014), which takes an
additional user input (e.g. a user image) along with
a noize vector z. It learns a mapping from a pair of
the random noise vector z and input image x to the
target image y. The conditional GAN helps to make
the generated image G(x,z) to be correlated with the
input image x.

Training the GAN model, however, is unstable,
because the objective function of GAN is the mini-
max problem that D tries to minimize the loss, while
G tries to maximize the loss of D simultaneously. To
make GAN training stable, many variations have been
proposed in terms of architectures (Radford et al.,
2016), loss functions (Arjovsky et al., 2017; Gulra-
jani et al., 2017; Mao et al., 2017), and training algo-
rithms (Salimans et al., 2016; Karras et al., 2017).



2.2 Image-Conditional Image
Generation

In the field of image-conditional image generation,
conditional GAN based approaches have been domi-
nant. They show remarkable results for various appli-
cations: image inpainting (Pathak et al., 2016; lizuka
et al., 2017), interactive image editing (Brock et al.,
2016), super-resolution imaging (Ledig et al., 2017),
domain-transfer (Kim et al., 2017b), and image-to-
image translation (Zhu et al., 2017; Isola et al., 2017).

(Isola et al., 2017) have proposed a general
purpose image-conditional image generation model
called pix2pix, which supports the relatively high res-
olution result images (256 x 256) and has become
a widely-used model for this problem. (Yoo et al.,
2016) have proposed a clothing image generation
model, which generates clothing images at 64 x 64
resolution.

CycleGAN (Zhu et al, 2017) and Disco-
GAN (Kim et al., 2017b) conduct image-conditional
image generation with unpaired image datasets. Cy-
cleGAN supports up to 256 x 256 resolution images.
It works well when changing the style, while keep-
ing a shape of an object in an input, but it is difficult
to change shape itself. DiscoGAN is relatively easy
to change shape itself, unlike CycleGAN. However, it
supports a relatively low resolution (64 x 64).

In this paper, we propose a clothing image gen-
eration model based on pix2pix. Our method is de-
signed by adopting a coarse-to-fine strategy to cope
with clothing image generation where a large-shape
change is required.

2.3 Coarse-to-fine Strategy

Similar to ours, GAN approaches adopting the coarse-
to-fine strategy to generate detailed images have been
proposed. (Denton et al., 2015) have proposed a
multi-stage image generation process consisting of
several GANs. Each GAN conditioned on the previ-
ous GAN results generates a residual image; the result
residual image is added to the previous GAN result to
create the input of the next GAN. This iterative gener-
ation process can produce sharper images. (Mathieu
et al., 2015) have proposed a multi-scale network to
predict future video frames with the similar approach.

(Zhao et al., 2017) have shown image-conditional
image generation from an input cloth image to a cloth
image in a different-view via two-stage image genera-
tion process. At the first stage, they generate a coarse
image by using a Variational Autoencoder (VAE),
which is a generative model and relatively easy to
train compared to GAN, but generates a blurry im-

age. At the second stage, they generate a fine image
through conditional GAN that has a pair of the coarse
image from the first stage and the input image. Huang
et al. (Huang et al., 2017b) have shown two-stage text-
to-image generation with a sequence of GANs in a
similar manner.

(Karras et al., 2017) have proposed GAN training
method, called progressive growing, which is similar
to supervised pre-training (Goodfellow et al., 2016;
Bengio et al., 2007). This method progressively adds
a block on the generator and discriminator to gener-
ate the target resolution image. Based on this con-
cept, it can generate high-resolution face images from
a noise vector. However, this approach produced
images from a noise vector, so it was not directly
designed for image-conditional constraints like our
clothing image generation problem.

Except for (Karras et al., 2017), aforementioned
studies (Denton et al., 2015; Mathieu et al., 2015;
Zhao et al., 2017; Zhang et al., 2016) require a multi-
network configuration using pairs of generators and
discriminators for stages. As a result, it causes a large
model size. (Karras et al., 2017) have implemented a
coarse-to-fine approach with a single pair of a gener-
ator and a discriminator. It is, however, not designed
for image-conditional constraints. So, it is unclear to
apply the model to our target task without modifica-
tion.

Instead of using multiple, separate pairs of genera-
tors and discriminators, our model progressively con-
figures the network to be appropriate for each stage.
Furthermore, we design our approach for respecting
image-conditional constraints.

3 Rough-to-Detail GAN

We propose a new image-conditional image gen-
eration model, named rough-to-detail GAN (rt-
dGAN). The rtdGAN is a conditional GAN based im-
age generation model that is trained in a coarse-to-
fine manner, in order to solve the global consistency
problem (Goodfellow, 2016). This problem causes in-
consistent structures on generated images, especially
in high resolution. In this section, we introduce the
architecture of rough-to-detail GAN, objective func-
tion, and rough-to-detail training.

3.1 Architecture Design

Our model is based on a conditional GAN, which con-
sists of a generator G = {Gg, Gp} and a discriminator
D. G consists of an encoder Gg and a decoder Gp,
where Gg = {gé,...,gﬂ’[}, Gp = {g}i,...,gﬂl”}, gl is
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Figure 2: (a) shows overview of rough-to-detail training. At the first stage, the generator G; works with a target image yj,

which has the coarse-structure of the image. As the training goes on, we incrementally add a decoder block gg[

Nt on the

decoder part of G; for generating larger images with finer details. (b) shows the structure of a decoder block. The flow of

a previous result, gi[l (+), is divided into two flows. The left-hand flow is used to resize and enhance previous results. The
right-hand flow is to generate details of the image. a is a weighted term introduced for stably using the newly added decoder
block. For the smooth fade-in, a increments from O to 1. After a fade-in, a is fixed to 1.

an j-th encoder block and gé is an j-th decoder block,
and M is the number of blocks in each encoder and
decoder.

The encoder maps an input image x to a latent vec-
tor. Each encoder block g7 produces a down-sampled
feature map, which contains higher level information
as an output of its prior block géfl. We use a general
stride-convolution block as the encoder block.

The decoder generates an image from the latent
vector. Each decoder block gfi is designed to produce
an up-sampled and refined result with the result of
its prior block gfl. Therefore, a number of decoder
blocks determines a size of an image generated by G.
We use a modified version of the residual block (He
et al., 2016) as the decoder block. The detailed infor-
mation of the residual block is provided in Figure 2b.
The entire structure of our G is similar to U-Net (Ron-
neberger et al., 2015), which can preserve contents of
the input image x via skip-connection between g and
gi,. The skip-connection is used for reducing the in-
formation loss caused by the bottleneck between the
encoder and the decoder.

We implement a coarse-to-fine strategy through
manipulating the structure of the decoder Gp. Our
generator G can control the size of result image via
adding decoder blocks. Given N stages of our rough-
to-detail training, let G; to be a generator G at the
stage i. At stage i = 1, G (the generator of the first
row in Figure 2a) generates a small image, aiming to

achieve the coarsest version of the target image via an
asymmetric encoder-decoder structure, where G has
M encoder blocks and Gp has only M — N + 1 decoder
blocks. As we have more stages, we have additional
decoder blocks on the generator. In the end, at stage
i =N, Gy (the generator of the last row in Figure 2a)
creates a larger image containing details of the target
image via the symmetric encoder-decoder structure,
where Gg and Gp have M blocks.

Note that we did not make our encoder structure
to grow during the training process. If the encoder
network grows, it also suggests that the input image
should start with a very small input image, indicating
that the information of the pixel area required for cre-
ating the clothes image in the input image can be lost
compared to a bigger size input. Therefore, there is
a possibility that the error created by this lost infor-
mation might spread through the network as the stage
progressed. To prevent this potential loss of pixel in-
formation, we freeze the encoder structure so that it
can deal with as large images as possible.

We utilize the patch discriminator D, which deter-
mines whether the local patch of an image is real or
not, while a general discriminator examines the entire
image. This approach is more beneficial for describ-
ing high-frequency details (Isola et al., 2017; Li and
Wand, 2016; Zhu et al., 2017). The detailed archi-
tecture of each network is summarized in the supple-
mentary material.



3.2 Objective Function

Our objective function consists of three loss terms:
Adversarial loss, Content loss, and Laplacian loss.
The adversarial loss is used for generating realistic
images and content loss has beneficial to force low-
frequency correctness between the result image and
the target image (Isola et al., 2017). The Laplacian
loss is utilized to sharpen the result image.

The adversarial loss is used to generate an image
indistinguishable with a real image. The loss is the
same to the objective of the conditional GAN, which
is expressed as:

Ladv(GivD) = E)Ci-,y:' [D(xivyi)} - EX,X,‘ [D(xiv Gi(x))]7
(D
where y; is a target real image for the stage i, x is the
original input image, G;(x) is the fake image, x; is a
resized image of x whose size is same to y;.
The content loss is used for generating a near
ground-truth target image. The content loss is an L1
loss between a real image and a generated image, and

is defined as follows:
Lcon(Gi) :EX,)’i[Hyi_Gi(x) ”1] (2)

We use a Laplacian loss to generate a sharper im-
age. The Laplacian loss is an L1 loss between the
Laplacian filtered real image and the generated im-
age. Note that the Laplacian filtered image has been
widely used for applications related to high-frequency
information such as edge detection (Marr and Hil-
dreth, 1980) and edge-preserving inpainting (Kim
et al., 2017a). The Laplacian loss is defined as the
following:

Liap(Gi) = B[l Lap(yi) = Lap(Gi(x)) [h],  (3)

where Lap(-) is a Laplacian filtered image, which
is approximated with the difference of Gaussians
(DoG) (Szeliski, 2010) in our case.

Our final objective is then defined as follows:

G} = argminmax Aggy Loay(Gi, D)+
kcanLcon (Gz) + }‘daleap(Gi)v

where Augy, Acons Map are parameters that balance
three loss terms.

3.3 Rough-to-detail Training

To realize our goal, we use rough-to-detail network
training that performs a coarse-to-fine image gener-
ation through N stages. Through this training algo-
rithm, our model gradually creates multiple scales of
the target image from a coarse-scale to a fine-scale.

At a stage i, the model upsamples and refines the
result of the previous stage i — 1 to produce an inter-
mediate target image y; of the stage i. In this manner,
the network learns the overall structure of the target
image and then learns its details gradually. By repeat-
ing this process, our model finally generates the target
image yy. An overview of rough-to-detail is shown in
Figure 2a. We first explain how to generate interme-
diate target images, followed by our learning process
at each stage.

Intermediate target images. The goal of a stage i
is to create representative structural characteristics at
its chosen scale from the original target image y. To
do this, we prepare an intermediate target image y; for
the stage i. For this purpose, we utilize the Gaussian
image pyramid representation.

The Gaussian image pyramid representation is
widely used in computer vision area, and is a
useful tool for analyzing an image in various
scales (Szeliski, 2010; Lindeberg, 1994). Normally,
the image pyramid consists of various sizes of images,
from the smallest coarse-level (the top of the pyramid)
image to the largest fine-level image (the bottom of
the pyramid).

Let the total pyramid level to be N and
the Gaussian image pyramid representation y, =
{39,...,y) '} given the H x W original target image
y. Each level of pyramid y; is generated by a sequence
of the Gaussian blur and down-sample on yé’l. As a

result, the top of the pyramid is the 2,\’,'1—,1 X 2,\% small-

est image yg —1 which contains the coarsest structure
of the input image, and the bottom of the pyramid is

the H x W largest image yg, which is the original im-
age y.

Learning process at each stage. Because the size of
a target image is different at every stage, we should
setup G; to generate a target image y; for the stage
i. As we mentioned in Section 3.1, the number of
decoder blocks determines the size of an image gen-
erated by G;. So, we setup G; via adding a block
gly ~N*i on the decoder Gp.

As shown in Figure 2a, in the first stage, our train-
ing starts with an asymmetric encoder-decoder net-
work G| which consists of an encoder with M encoder
blocks and a decoder with M — N + 1 decoder blocks.
In the last stage, our training works with the symmet-
ric encoder-decoder network Gy, which consists of
the encoder with M encoder blocks and an incremen-
tally modified decoder with M decoder blocks. Our
learning process for each stage progresses with a se-
quence of three steps: Preparation, Fade-in, and Sta-
bilization.



e Preparation is the process of setting up the net-
work to generate a target image y; for the stage i. We
set (N —i)-th level of the Gaussian pyramid represen-
tation y§ ' as the intermediate target image y;. We

add a residual block g{:’ ~N*i to the decoder Gp of the
generator G; for increasing the resolution.

e Fade-in and Stabilization are introduced for
stably updating network parameters. Fade-in is per-
formed for avoiding a sudden shock caused by a
newly added decoder block gz” N+ on Gp of G;. To
avoid such a problem, we use a weighting term o to
regulate the influence of the decoder block, which is
added for generating details of a result image. o in-
crements linearly from O to 1 per every epoch. After
the fade-in, the network is further trained for stabi-
lization. The detail of training algorithm is described
in the Algorithm 1.

Algorithm 1: Rough-to-detail training

1 Let current training epoch #, current stage i

2 Build the Gaussian pyramid of the target image
yi s

foriin[1,...,N]do

Set yfgv ~ as an intermediate target image

5 Add a decoder block on the decoder Gp in
the generator G;

Initialize ot as O

while iterations t < tpaqe + tgap do

= W

Sample a minibatch of image x, y; from

training data

9 ifr <tr4q. then

10 | Increment o

11 end

12 Update the generator G; with the loss
gradients of (Eq. 4)

13 Update the discriminator D with the
loss gradients of (Eq. 1)

14 end

15 end

4 EXPERIMENT SETTING

In this section, we explain various experiment
settings used for validating the effectiveness of our
proposed rtdGAN model. =~ We conduct qualita-
tive and quantitative evaluations on the LookBook
dataset (Yoo et al., 2016). We compare the quality
of result images with two other methods: pix2pix and
PLDT. pix2pix is an image conditional image gener-
ation model proposed by (Isola et al., 2017), which

is the base model for our rtdGAN. PLDT is a cloth-
ing image generation model proposed by (Yoo et al.,
2016). We trained PLDT and pix2pix on the Look-
Book dataset using the source codes released by au-
thors. We follow the training protocols described in
their papers.

Dataset. LookBook (Yoo et al., 2016) is a dataset
for the clothing image generation problem. It is made
up of pairs of images of people dressed and clothing
product images that they are wearing. LookBook in-
cludes a total of 9,732 top product images and 75,016
fashion model images; see Figure 3(a) and (f). Each
product image is associated with eight fashion model
images on average. For training, we resize all images
to 256 x 256. We use ten percents of clothing images
and its associated model images as the test split, and
the remaining images are used as the train split. In the
test split, we did data cleaning by removing redundant
images that are in both splits. As a result, in the test
split, the total number of clothing images are 939 and
the total number of its fashion model images is 7,307.

4.1 Implementation details

A decoder block g; has two ad-hoc blocks: ToRGB
and Skip. The ToRGB block converts an intermedi-
ate generator result into an RGB image. We use this
ad-hoc block for every stage except the last stage N,
because the results of the generator in those stages
are not RGB images. The ToRGB block consists of
LeakyReLU (He et al., 2015) with 0.2 slope, 1 x 1
Convolution, and Tanh. Skip is for the channel reduc-
tion before the element-wise addition. Skip consists
of upsampling by a factor of 2 and 1 x 1 convolution.

To generate result images (Figure 1), we use the
total stage number N as 3 given the input resolution
of 256 x 256; one can use more stages for higher
resolutions. In fade-in, we train D and G; for 40
epochs (ff44. in Algorithm 1). In stabilization, we
train D and G; for another 40 epochs (¢, in Algo-
rithm 1). All models are trained using the Adam opti-
mizer (Kingma and Adam, 2015), where initial learn-
ing rate is 0.0002, momentum parameters [ is 0, and
B2 is 0.99. Mini-batch sizes of each stage are 60, 40,
and 20 from the stage 1 to the stage 3, respectively.
Also, target resolutions from the stage 1 to 3 are 64,
128, and 256.

We use the conditional version of the Wasserstein
loss (Arjovsky et al., 2017; Gulrajani et al., 2017) as
the adversarial loss. In our settings, the weight for
gradient penalty is 10 and the number of critic is 1.
All of balancing parameters (Auqy, Acon> Map) in Equa-
tion 4 is 1.



Table 1: RMSE, SSIM, and Recall @60 results of our model
with other conditional GAN methods of PLDT and Pix2Pix.

Method RMSE SSIM Recall@60
PLDT
(Yoo et al., 2016) 0.2921  0.4096 0.1787
Pix2Pix
(Isola et al., 2017)  0.3009 0.5570 0.1873
Ours
(3 stages) 0.2590  0.5967 0.3373
5 RESULTS

We use there different evaluation metrics to com-
pare tested methods. We also conduct user study for
evaluating human perception on different results.

RMSE and SSIM. We measure a quantitative per-
formance via measuring the similarity between gen-
erated images and its target ground-truth product
images. We use two well-known metrics: Root
Mean Square Error (RMSE) and Structural Similar-
ity (SSIM) (Wang et al., 2004). RMSE measures
dis-similarity between two images, in a range from
0 (the same) to 1. SSIM measures a perceived qual-
ity of digital images in a range from O to 1, where
bigger SSIM values mean higher similarity between
two tested images. Before measuring SSIM, we con-
vert RGB images to grayscale images, because SSIM
supports only grayscale image.

Recall@K. If a generated image is similar to a tar-
get image, it should be easy to find the target im-
age in image search when we use the generated im-
age as a query. Assuming this property, we perform
image search for evaluating our model. We use the
query image generated from a fashion model image
to find the corresponding ground-truth clothing image
in the test split. For measuring the quality of image
search, we use recall@k as metric. To perform im-
age search, we extract image features via pre-trained
densenet (Huang et al., 2017a).

5.1 Quantitative evaluation

A quantitative comparison is reported in Table 1.
Our model with three stages achieves better RMSE,
SSIM, and recall@60 results over the prior methods.
Compared with PLDT, our model with three stages
achieves 12.7% improvement in RMSE (from 0.2921
to 0.2590), 45.6% improvement in SSIM, and 88.7%
improvement in recall@60. Based on these results,
we can conclude that our model can generate more
similar images to target clothing images than other
models.

Examples of product image search are shown in
Figure 4. In the second and third rows, the ground-
truth target clothing images are located in the top-1
among retrieved results. This result is achieved by
the high similarity between our generated images and
their ground-truth images.

5.2 Qualitative evaluation

We also conduct qualitative comparisons between
ours and other methods, which are shown in Figure 3.
PLDT (e) tends to generate blurry images, because
its target resolution is 64 x 64, while our model and
Pix2Pix (d) can generate 256 x 256 resolution images.
Pix2Pix (d) results do not have fine patterns nor colors
contained in the target image, even if they are quite
realistic.

We also test our method even with one stage,
which adopts the symmetric encoder and decoders for
the generator and thus does not contain our rough-to-
detail training that is guided by our intermediate tar-
get images. Our method with a single stage (c) can
generate clothing images with an appropriate pattern
and colors based on an input image. However, all of
these results contain blurry silhouette compared to in-
put images.

On the other hand, our method with three stages
(b) shows visually pleasing results, while producing
global structures with fine details. Especially, in the
second row of Figure 3, our result satisfies the color
pattern that horizontally splits black and gray. Fur-
thermore, our model can generate various type of
clothing images. In the last row of Figure 3, ours can
generate a skirt image, whereas two prior techniques
(d) and (e) still generate sweater-like clothing images.

5.3 Human evaluation

Although RMSE, SSIM, and Recall @K measure sim-
ilarity between generated images and target images,
they cannot fully reflect the quality according to the
human perception. To complement this limitation of
the quantitative measures, we evaluate the quality of
result images through human perception, as well.

We randomly select 70 model images that are as-
sociated with different product images in the test split.
For each model image, three clothing images are gen-
erated by ours with three stages, Pix2Pix, and PLDT.
All result images are evaluated in at its original size
without any resizing. Given model images and their
resulting images by different methods, 30 users are
asked to perform two tasks related to realism and sim-
ilarity aspects, as follows:
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Figure 3: Examples of clothing image generation results. (a) Input fashion model images from the LookBook test split. (b)
Results by our model with three stages of rough-to-detail training. (c) Results by our model with only a single stage of rough-
to-detail training. (d) and (e) show results of other conditional GANs methods, Pix2Pix (Isola et al., 2017) and PLDT (Yoo
et al., 2016), respectively. (f) Ground truth target clothing images. Our results with three stages show well-constructed
structures with fine-details.
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Figure 4: Examples of clothing product search results. (a) Input fashion model images from the LookBook test split. (b)
Generated clothing images by our model. (c) Top-10 image search result. Results in the red box indicate the ground-truth
clothing images.

1. Realism: Rank result images in the order that they To compare results of different methods, we cal-

look like real clothing images. culate the average human rank computed by ranks
given by users. Figure 5 shows the 95% confidence
interval of the average human rank in each task.
Our model achieves the best average human rank on

2. Similarity: Rank result images in the order that
they reflect details from input model images.
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Figure 5: Average human rank about image quality of ours and other conditional GAN methods, Pix2Pix (Isola et al., 2017)

and PLDT (Yoo et al., 2016), with 95% confidence intervals.
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Figure 6: The progress of image generation in our model. [i/N] means results after i-th stage finished, when the total number

of stage in rough-to-detail training is N.

“Realism”, indicating that users thought that our re-
sults are more realistic compared to other methods.
Moreover, Figure 5b also shows that our model also
achieves the best average human rank on “Similarity”,
suggesting that our model can generate clothing im-
ages that have details from input model images, com-
pared to other methods.

6 ABLATION STUDY

To investigate the effectiveness of the rough-to-
detail training, we conduct an ablation study. To see
how our rough-to-detail training improves the quality
of images, we train our model with various values for
N up to 3 stages given our target image resolution.

Generated images with different numbers of
stages are shown in Figure 6. Our model with N =3
progressively generates higher quality images. Af-
ter the first stage, the model generates blurry cloth-
ing images (Figure 6(b)). After the second stage, it
starts to reflect the pattern and shape of the target (Fig-
ure 6(c)). Finally, the result becomes more clear and
sharp (Figure 6(d)). Our model only with the single
stage training produces structurally collapsed results,

Table 2: RMSE, SSIM, and Recall @60 results of our model
with different N, where N is the total number of stages in
rough-to-detail training.

Method RMSE SSIM Recall@60
Ours (N =1) 0.2660 0.5256 0.2738
Ours (N =2) 0.2594 0.5782 0.2869
Ours (N =3) 0.2590 0.5939 0.3373

exhibiting the global structure problem, compared to
three stage training results. This is mainly because
using only the single stage does not adopt the rough-
to-detail training and thus it is difficult to generate the
global structure with fine details.

We examine quality improvement quantitatively
as well. Table 2 shows that RMSE, SSIM, and re-
call@60 results of our model according to N. We
find a tendency that the more stages the model goes
through, the higher performance is achieved. This
demonstrates the benefits of our rough-to-detail train-
ing, where a lower stage captures higher level struc-
tures, while a higher stage depicts finer details. Com-
pared to our model with N = 1, our model with N =3
achieves 2.7% improvement in RMSE, 12.9% im-
provement in SSIM, and 23.1% improvement in re-



call@60.

7 CONCLUSION

In this paper, we have proposed rough-to-detail
conditional GAN (rtdGAN) for the clothing image
generation problem. Image generation with high-
resolution (e.g., 256 x 256 resolution) has been re-
garded as a difficult task. To solve the problem, we
have split the difficult single stage image generation
process into a relatively easy multi-stages image gen-
eration process. We have applied the coarse-to-fine
strategy on the image-conditional image generation
model and proposed a new training method called
rough-to-detail training. We have also designed a
generator network that is suitable for the proposed
training method. The generator in our model is pro-
gressively configured for an intermediate target im-
age at each stage by adding a decoder block. Via this
process, our model can generate from small size im-
ages with global structures to large size images with
details. To validate our proposed model, we have
conducted extensive evaluations on the LookBook
dataset. Compared to other conditional GAN models,
our model can generate visually pleasing 256 x 256
clothing images while keeping global structures and
containing details of target images.

Limitations and Future Work. We have shown
the effectiveness of the coarse-to-fine strategy for the
image-conditional image generation model. Through
this multi-stage process, our model can achieve the
quality improvement. Nonetheless, choosing the op-
timal number of total stages N rigorously is left for
future study. In the current work, we simply choose
the value of N depending on the resolution of target
images, but the more thorough analysis is required
for handling a wider range of image resolutions. In
addition, we also plan to test our model for different
applications, to broadly investigate the effectiveness
of our model on image-conditional image generation,
not only on clothing image generation.
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