
Bounds on the Geometric Mean of Arc Lengths for

Bounded-Degree Planar Graphs

Mohammad Khairul Hasan, Sung-Eui Yoon, and Kyung-Yong Chwa

Division of Computer Science

Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

shaon@tclab.kaist.ac.kr,sungeui@kaist.edu,kychwa@tclab.kaist.ac.

kr

Abstract. Data access time becomes the main bottleneck in applications dealing
with large-scale graphs. Cache-oblivious layouts, constructed to minimize the
geometric mean of arc lengths of graphs, have been adapted to reduce data access
time during random walks on graphs. In this paper, we present a constant factor
approximation algorithm for the Minimum Geometric Mean Layout (MGML)
problem for bounded-degree planar graphs. We also derive an upper bound for
any layout of the MGML problem. To the best of our knowledge, these are the
first results for the MGML problem with bounded-degree planar graphs.

1 Introduction

Large-scale graphs are extensively used in variety of applications including data

mining, national security, computer graphics, and social network analysis. Ad-

vances in data-capturing and modeling technologies have supported the use of

large-scale graphs. Massive polygonal models–which are typically bounded de-

gree planar graphs–are easily constructed using various techniques developed

in computer-aided design (CAD), scientific simulation, and e-Heritage [1]. So-

cial network analysis is a critical component to understanding various social

behaviors, urban planning, and the spread of infectious diseases [2]. With hun-

dreds of millions of nodes, complexity becomes a major challenge in analyzing

large-scale graphs.

To process large-scale graphs in a timely manner, efficient processing al-

gorithms have utilized the high computational power of CPUs and Graphics

Processing Units (GPUs). Over the last few decades, the widening gap between

processing speed and data access speed has been a major computing trend. For

nearly two decades, the CPU performance has increased at an annual rate of

60%, meanwhile the disk access time has been decreased by an annual rate of

7%-10% [3].

In order to avoid high-latency data accesses, system architectures increas-

ingly utilize caches and memory hierarchies. Memory hierarchies have two

main characteristics. First, lower level memory have higher storage capacities

and longer data access times. Second, whenever a cache miss occurs, data is

transferred in a block containing data between different memory levels. Typi-

cally, nodes and arcs of a graph are stored linearly in the memory space. There

exists an exponential number of choices for storing nodes and arcs in the one

dimensional memory space. An ordering of nodes or arcs within the one dimen-

sional memory space is a data layout. Given a block-based caching architecture

with slower data access times for lower memory levels, it is critical to store data

that are likely to be accessed together very close in the data layout.

The geometric mean of arc lengths for a graph has been shown to have a high

linear correlation with the number of cache misses occurred while accessing the

graph in the data layout [4]. Therefore the geometric mean of arc lengths is a

cache-coherent metric. Efficient layout construction algorithms that reduce the

geometric mean of input graphs have been used to improve cache performance.

The constructed cache-coherent layouts have been demonstrated to show sig-

nificant performance improvement over other tested layouts. However, it has

not been proven that the constructed layouts are optimal in terms of geometric

mean.

In this paper we investigate an optimal algorithm that minimizes the value of

the geometric mean of arc lengths for a class of bounded-degree planar graphs.

Problem statement and main results: We start by defining a Minimum Geo-

metric Mean Layout (MGML) problem for a graph. Given a graph, G =(N ,A),
where n = |N | and m = |A |, a layout, ϕ : N → [n] = {1, ...,n}, is a one-to-one

mapping of nodes to position indices.

The geometric mean, GMean, of arc lengths for a layout ϕ of graph G is:

GMean =

(

∏
(u,v)∈A

|ϕ(u)−ϕ(v)|
)

1
m

= 2log((∏(u,v)∈A |ϕ(u)−ϕ(v)|)
1
m)

= 2
1
m ∑(u,v)∈A log(|ϕ(u)−ϕ(v)|)

ϕ∗ : N → [n] is defined as an optimal layout in terms of the minimum geometric

mean of arc lengths. The geometric mean with the optimal layout, GMeanOPT , is

similarly defined by replacing ϕ with ϕ∗. Throughout this paper we will assume

that the “log” function is of base 2.

In this paper we propose a layout construction algorithm which, for a bounded

degree planar graph, gives a layout with a geometric mean that is at most a con-

stant factor worse than the geometric mean of the optimal layout. To the best of

our knowledge, this is the first result in this area. We also show that the geomet-

ric mean of arc lengths for an arbitrary layout is O(n), where n is the number of

nodes in the graph.

Page 2 of 12

We discuss works related to our problem in Sec. 2 followed by a background

on computing cache-coherent layouts of graphs in Sec. 3. Our theoretical results

are explained in Sec.4 and we conclude with related open problems in Sec. 5.

2 Related Work

In this section, we briefly introduce works related to our graph layout problem.

2.1 Graph Layout Optimization

For a graph layout, we can formulate a cost function which indicates how good

the layout is. Layout problems with common cost functions have attracted much

researcher attention in recent years. In most cases the problems are NP-complete [5–

7] for general graphs. The most popular cost functions include arithmetic mean

of arc lengths (also known as Minimum Linear Arrangement (MLA) problem),

bandwidth, etc.

Arithmetic Mean: Minimizing the arithmetic mean or MLA, is NP-complete [5],

thus, researchers are interested in approximation algorithms. The first approxi-

mation algorithm for MLA was derived by Hansen [8] with a factor of O(logn)2.

Currently the best known algorithm for MLA [9] has a factor of O(
√

logn log logn).
MLA has polynomial algorithms when the input graph is a tree [10] and linear

algorithms when the input graph is a rectangular grid [11].

Bandwidth: Another interesting problem related to graph layout is the Band-

width, where the objective is to minimize the maximum arc length. This problem

is NP-Hard for general graphs [6], for trees with maximum degree 3 [12], and

for grid and unit disk graphs [13]. This problem has polynomial algorithms for a

variety of graph families. More details can be found in a recent survey of graph

layout problems [14].

Geometric Mean: The geometric mean of arc lengths for a graph has recently

been proposed to measure the cache-coherence of a graph layout in a cache-

oblivious case [4]. Geometric mean is strongly correlated to the number of cache

misses observed during the random access of the meshes and graphs in various

applications. It is assumed that the block sizes encountered at runtime are power-

of-two bytes. Then, the expected number of cache misses with those power-

of-two bytes cache blocks is computed. More background information on the

derivation of geometric mean will be presented in Sec. 3.

2.2 Space-Filling Curves

Space-filling curves [15] have been widely used in applications to improve

cache utilization. Space-filling curves assist in computing cache-friendly layouts

Page 3 of 12

for volumetric grids or height fields. The layouts yield considerable performance

improvements in image processing [16] and terrain or volume visualization [17,

18]. A standard method of constructing a layout for graph using a space-filling

curve is to embed the graph in a geometrically uniform structure that contains

the space-filling curve. To embed the graph in such a uniform structure (e.g.,

grid) geometrically, each node of the graph must contain geometric informa-

tion.

Gotsman and Lindenbaum investigated the spatial locality of space-filling

curves [19]. Motivated by searching and sorting applications, Wierum [20] pro-

posed a logarithmic measure resembling the geometric mean of the graph for

analyzing space-filling curve layouts of regular grids.

Although space-filling curves are considered a good heuristic for designing

cache-coherent layouts, their applications are limited to regular geometric data

structures like grids, images, or height fields. This is mainly due to the nature

of the procedure of embedding onto uniform structures of space-filling curves.

A multi-level layout construction method minimizing the geometric mean [1]

can be considered as a generalization method of classic space-filling curves to

arbitrary graphs.

3 Background on Cache-Coherent Layouts

In this section we give background information on computing cache-coherent

layouts.

3.1 Block-based I/O Model

Caching schemes are widely used to bridge the widening gap between data pro-

cessing speed and data access speed. The two main characteristics of modern

memory hierarchies are, 1) varying data storage size and data access time be-

tween memory levels and 2) the block-based data fetching. Those characteris-

tics are well captured in the two-level I/O-model defined by Aggarwal and Vitter

[21]. This model assumes a fast memory called “cache,” consisting of M blocks,

and a slower infinite memory. Each cache block is B; therefore the total cache

size is M×B. Data is transferred between the different levels in blocks of con-

secutive elements.

3.2 Cache-Oblivious Layout Computation

There have been research efforts to design cache-coherent layouts that reduce

the number of cache misses during accessing these graphs and meshes in vari-

ous applications [4, 22, 1, 23]. Those approaches cast the problem of computing

Page 4 of 12

a cache-coherent layout of a graph to an optimization problem of minimizing a

cost metric, which measures the expected number of cache misses for the lay-

out during random walks on a graph. Those methods also utilize an input graph

representing the anticipated runtime access pattern. Each node of the graph rep-

resents a data element and a direct arc (i, j) between two nodes indicates an

anticipated access pattern; a node j may be accessed sequentially after a node i.

3.3 Geometric Mean

Cache-coherent layouts can be classified into cache-aware and cache-oblivious

layouts. Cache-aware layout are constructed by optimizing the expected number

of cache misses given a particular cache block size. On the other hand, cache-

oblivious layouts are constructed without optimizing at a particular cache block

size. Instead, cache-oblivious layouts are constructed by considering all the pos-

sible block sizes that may be encountered at runtime. Cache-oblivious layouts

can yield significant benefits on architectures that employ various cache block

sizes.

For the cache-aware layouts, it has been derived that the number of strad-

dling arcs of an input graph in a layout determines the number of observed cache

misses during random access at runtime [4]. The expected number of cache

misses for a cache-oblivious layout is computed by considering power-of-two

bytes block sizes. The result can be derived from that of the cache-aware case.

In cache-oblivious layouts, the expected number of cache misses is reduced to

the geometric mean of arc lengths of the graph. More importantly, the geomet-

ric mean has been demonstrated to have a strong correlation to the numbers of

observed cache misses at runtime for various layouts.

3.4 Multi-level Construction Method

In order to construct cache-oblivious layouts that optimize the cache-oblivious

metric (i.e., the geometric mean) multi-level construction methods have been

introduced [4, 1]. The idea is to partition an input graph into a small number of

subsets while minimizing the number of straddling arcs among partitioned sets.

After partitioning into subsets, orders of partitioned sets are computed while

minimizing the geometric mean. This process is recursively performed on each

partitioned set until each set has one node. As we partition each set and com-

pute an ordering among the partitioned sets, the global ordering of nodes for the

graph is progressively refined. Note that the overall process of multi-level con-

struction methods is similar to that of space-filling curves like Hilbert-curve [15].

This method runs quite fast and produces high-quality cache-oblivious lay-

outs. However, there have been no theoretical approaches investigating the op-

timality of the resulting layouts.

Page 5 of 12

4 Theoretical Results

In this section, we present a constant factor approximation algorithm for the

Minimum Geometric Mean Layout (MGML) problem for bounded-degree pla-

nar graphs. We also demonstrate that the geometric mean of arc lengths for an

arbitrary layout of a planar graph is O(n), where n is the number of nodes of the

graph. More formally, our algorithm and its analysis are based on the assump-

tion that the input graph is a n node planar graph whose maximum degree is

bounded by a constant k.

Graphs satisfying the above assumptions are widely used in the field of com-

puter graphics and are known as meshes. For the sake of clarity, we assume that

the input graph is connected and the number of nodes in the input graph is a

power of two. We can assume this without loss of generality because dummy

nodes and arcs can be added as appropriate to make the total number of nodes a

power of two and to make the graph connected. After applying our algorithm on

the modified graph we can get the layout of the original graph simply by taking

the relative ordering of real nodes from the generated layout without increasing

the geometric mean of arc lengths for the original graph.

Throughout this paper we use the following notations. G = (N ,A) is our

input graph with n = |N | and m = |A |, where n is a power of 2 and m = θ(n).
For arbitrary graph G = (N,A) and X ⊆ N, G[X] is the subgraph of G induced

by X . Also for a graph G = (N,A) and for any two node sets P ⊆ N and Q ⊆ N,

Crossing(P,Q) is the set of arcs Ax ⊆ A each of which has one node in P and

another node in Q. For any graph G, N(G) and A(G) are the set of nodes and

the set of arcs of the graph respectively.

4.1 Algorithm

We use a divide and conquer approach to find a layout ϕ given a graph. We

use two algorithms, Partition and MakeLayout. Algorithm Partition takes a

planar graph with a maximum degree bounded by a constant k as an input. Using

the procedure described in [24] Partition algorithm computes a partition (P,Q)
of nodes of the input graph such that |P|= |Q| and Crossing(P,Q) is bounded by

c×
√

k× (|P|+ |Q|), where c is a constant. Theorem 1 and Corollary 1 ensure

that such a partition can be generated.

Theorem 1 ([24]). Let G be a planar graph with a maximum degree k. Then

there exists a set of arcs of size ≤ 2
√

2kn such that by removing this arc set one

can partition G into two subgraphs each having at most ⌈2
3
× |N(G)|⌉ nodes.

Furthermore such an arc set can be found in linear time.

Page 6 of 12

Corollary 1 ([24]). For any planar graph G with a maximum degree k there ex-

ists an arc set R with size ≤ (6
√

2+4
√

3)
√

kn whose removal divides the nodes

of G into two sets of P and Q such that |P| ≤ ⌈|N(G)|/2⌉, |Q| ≤ ⌈|N(G)|/2⌉,

and the arc set connecting P and Q belongs to R.

Corollary 1 is based on both Theorem 1 and the divide-and-conquer parti-

tioning method described in [25]. Assuming that n is a power of two, a n-node

planar graph G with maximum degree bounded by k can be partitioned into

two subgraphs with equal nodes by removing at most (6
√

2+4
√

3)
√

kn arcs in

O(n logn) time.

The MakeLayout algorithm takes an input graph and two indices indicating

the beginning and ending positions of the layout. Generating the layout for the

entire input graph involves an initial call to MakeLayout(G ,1,n): other calls

are made recursively. The algorithm first starts by checking if the input graph

contains only one node. If so, it constructs a layout consisting of that node.

Otherwise it splits the graph into two parts using the Partition algorithm. We

recurse this process until a graph consisting of only one node is reached.

Algorithm Partition (G)

01 Input: A bounded degree planar graph G

02 Output: A partition (P,Q) of N(G)
03 Begin

04 Find a partition (P,Q) of N(G) such that:

05 1. |P| = |Q|
06 2. |Crossing(P,Q)| ≤ c×

√

(k×|N(G)|)
07 return (P,Q)
08 End.

Algorithm MakeLayout (G, i, j)
01 Input: A bounded degree planar graph G

02 Initial and end positions, i and j, of any layout

03 Output: A layout of G

04 Begin

05 If |N(G)| = 1 then

06 Let u be the only node of G

07 Set ϕ(u) = i

08 Else,

09 Let (P,Q) be the partition of N(G) found using Partition(G)

10 MakeLayout(G[P], i, i+(j−i+1
2

)−1)

11 MakeLayout(G[Q], i+(j−i+1
2

), j)

12 End.

Page 7 of 12

4.2 Analysis

First, we will show that the geometric mean of arc lengths for a layout generated

by the MakeLayout algorithm is O(1).
Because the number, n, of nodes in the input graph is a power of two, it

is easy to see that the overall recursion tree of the MakeLayout algorithm is a

complete binary tree with n leaves and exactly logn levels. Additionally, level l

of this tree contains exactly 2l nodes, i.e., 2l calls to MakeLayout.

Each non-leaf node of the binary tree splits a graph into two subgraphs with

equal nodes by removing crossing arcs between those two subgraphs. Let Al

be the set of arcs removed by all nodes of level l of the recursion tree and

Costl = ∑(u,v)∈Al
log(|ϕ(u)−ϕ(v)|). The following two lemmas give an upper

bound for Costl on each level l.

Lemma 1. For each call of the algorithm MakeLayout(G, i, j), j − i is equal

to |N(G)|−1.

Proof. We will prove this lemma by induction on the level of recursion. At

level 0 the algorithm is called with G as G = (N ,A), with i and j as 1 and n

respectively. Since |N | = n the lemma is true for the level 0 call.

Suppose the lemma is true for any call at a level p. Consider a level p exe-

cution of the algorithm MakeLayout(G, i, j). If |N(G)| > 1, this execution will

make two level p+1 executions MakeLayout(G[P], i, i+(j−i+1
2

)−1) and

MakeLayout(G[Q], i+(j−i+1
2

), j) in line 10 and 11 in the algorithm MakeLay-

out respectively. Let G0 = G[P], i0 = i, j0 = i+(j−i+1
2

)−1 and G1 = G[Q], i1 =

i+(j−i+1
2

), j1 = j. Then j0− i0 = j−i+1
2

−1 = (|N(G)|−1)+1

2
−1 = |N(G)|/2−1 =

|P|−1 = |N(G0)|−1. Similarly, j1 − i1 = j− i− j−i+1
2

= j−i−1
2

= j−i+1
2

−1 =
|N(G1)|−1. Since every level p +1 execution has been generated from a level

p execution with a graph having more than one node, the lemma follows. ⊓⊔

Lemma 2. For each level l, Costl ≤ c×
√

kn×(
√

2)l × log n
2l , where n and k are

the number of nodes and maximum degree of G respectively and c is a constant.

Proof. If l = logn (i.e., the leaf level of the recursion) then Costl = 0 and also

log n
2l = 0. Therefore, the lemma is trivially true. Let us assume that 0 ≤ l ≤

logn− 1. Consider an execution of MakeLayout(G, i, j) at a level l. Since l ≤
logn−1, |N(G)|> 1. Algorithm MakeLayout uses algorithm Partition to split

the graph G into G[P] and G[Q] by removing arc set Crossing(P,Q). Consider

an arc a = (u,v) ∈ Crossing(P,Q) such that u ∈ P and v ∈ Q. It is easy to see

that at the end of the algorithm ϕ(u) ≥ i and ϕ(v) ≤ j. Therefore, log(|ϕ(u)−
ϕ(v)|) ≤ log(j− i) = log(|N(G)|− 1) = log(n

2l − 1) < log n
2l ; the first equality

follows from Lemma 1 and the last equality follows from the fact that in each

recursive call each child graph has exactly half of the nodes of the parent graph.

Page 8 of 12

Since there are exactly 2l nodes at the level l of the recursion tree, Costl <
2l × |Crossing(P,Q)| × log n

2l . The lemma follows from the fact that line 6 of

the Partition algorithm ensures that |Crossing(P,Q)| ≤ c×
√

k×|N(G)|) and

|N(G)| = n
2l . ⊓⊔

Lemma 3. ∑
logn

l=0 Costl ≤ c×
√

2k

(
√

2−1)2
×n

Proof. The proof can be found in the appendix. ⊓⊔

Lemma 4. The algorithm MakeLayout generates a layout of graph G =(N ,A)
with a geometric mean of arc lengths = O(1).

Proof. The value of the geometric mean,

GMean =

(

∏
(u,v)∈A

|ϕ(u)−ϕ(v)|
)

1
m

= 2log((∏(u,v)∈A |ϕ(u)−ϕ(v)|)
1
m)

= 2
1
m ∑(u,v)∈A log(|ϕ(u)−ϕ(v)|) = 2

1
m ∑

logn

l=0 Costl

≤ 2
1
m

(c×
√

2k)

(
√

2−1)2
×n

By Lemma 3

= O(1)

The last equality follows from the fact that m = θ(n). ⊓⊔

Lemma 5. The geometric mean of arc lengths for the optimal layout of a graph

G = (N ,A) is Ω(1)

Proof. Since the optimal layout ϕ∗ : N → {1, ...,n} is a bijective function, for

any arc (u,v) ∈ A , |ϕ∗(u)−ϕ∗(v)| ≥ 1. Thus,

GMeanOPT =
(

∏(u,v)∈A |ϕ∗(u)−ϕ∗(v)|
)

1
m ≥

(

∏(u,v)∈A 1
)

1
m = 1

⊓⊔

Using Lemma 4 and Lemma 5 we get the following result.

Theorem 2. The MakesLayout algorithm generates a layout for a graph G in

O(n log2 n) time such that the geometric mean of arc lengths of the graph is at

most constant times the geometric mean of arc lengths of the optimal layout.

4.3 Upper Bound of a Layout

Consider any arbitrary layout ψ of a graph G = (N ,A). Let (u,v) ∈ A be

an arbitrary arc of G . Then 1 ≤ ψ(u) ≤ n, where n = |N |. So, log(|ψ(u)−
ψ(v)|) < logn. Then the geometric mean of arc lengths for this layout is:

Page 9 of 12

GMeanANY =

(

∏
(u,v)∈A

|ψ(u)−ψ(v)|
)

1
m

= 2
1
m ∑(u,v)∈A log(|ψ(u)−ψ(v)|)

< 2
1
m ∑(u,v)∈A logn = 2

logn
m

m

= n

This observation along with Lemma 5 gives the following result.

Theorem 3. Any algorithm which generates a layout for a planar graph is an

O(n) approximation algorithm for the MGML problem for planar graphs.

5 Conclusion

We have presented a constant factor layout construction algorithm for the Min-

imum Geometric Mean Layout (MGML) with bounded-degree planar graphs

problem. To the best of our knowledge, this is the first such result in this area.

Our results are easily applicable to grids because grids belong to the class of

bounded degree planar graphs.

Since the MGML problem has strong practical applications, especially for

dealing with large-scale graphs, we seek to consider other classes of graphs.

Particularly, we will be investigating an optimal algorithm and bounds for trees,

a popular data structure used in various applications.

Acknowledgements

We would like to thank Peter Lindstrom, who first identified that the geometric

means of space-filling curves of grids converge to a constant, as the grid size in-

creases. This observation strongly supported that there is possibility that we can

have a constant-factor approximation algorithm in terms of minimizing the ge-

ometric means. We also thank Samuel Brice and group members of the KAIST

Theory of Computation for their English review and helpful feedbacks.

This project was supported in part by KAIST, MKE/MCST/IITA [2008-F-

033-02], MKE/IITA u-Learning, MKE digital mask control, MCST/KOCCA-

CTR&DP-2009, KRF-2008-313-D00922, MSRA E-heritage, and DAPA & ADD

contract(UD080042AD).

References

1. Yoon, S.E., Lindstrom, P., Pascucci, V., Manocha, D.: Cache-Oblivious Mesh Layouts. ACM
Transactions on Graphics (SIGGRAPH) 24(3) (2005) 886–893

Page 10 of 12

2. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and al-
gorithmic aspects of massive social networks. In: SODA ’04: Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA, Society for
Industrial and Applied Mathematics (2004) 718–727

3. Hennessy, J.L., Patterson, D.A., Goldberg, D.: Computer Architecture, A Quantitative Ap-
proach. Morgan Kaufmann (2007)

4. Yoon, S.E., Lindstrom, P.: Mesh layouts for block-based caches. IEEE Transactions on
Visualization and Computer Graphics (Proceedings Visualization) 12(5) (2006) 1213–1220

5. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In:
STOC ’74: Proceedings of the sixth annual ACM symposium on Theory of computing, New
York, NY, USA, ACM (1974) 47–63

6. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization problem. 16(3)
(1976) 263–270

7. Gavril, F.: Some np-complete problems on graphs. In: 11th Conference on Information
Science and Systems. (1977) 91–95

8. Hansen, M.: Approximation algorithms for geometric embeddings in the plane with applica-
tions to parallel processing problems. Foundations of Computer Science, 1989., 30th Annual
Symposium on (Oct-1 Nov 1989) 604–609

9. Feige, U., Lee, J.R.: An improved approximation ratio for the minimum linear arrangement
problem. Inf. Process. Lett. 101(1) (2007) 26–29

10. Goldberg, M.K., Klipker, I.A.: An algorithm for minimal numeration of tree vertices.
Sakharth. SSR Mecn. Akad. Moambe 81(3) (1976) 553–556 (In Russian).

11. Muradyan, D.O., Piliposyan, T.E.: Minimal numberings of a rectangular lattice. Akad. Nauk.
Armyan. SRR 1(70) (1980) 21–27 (In Russian).

12. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth
minimization. 34(3) (May 1978) 477–495

13. Dı́az, J., Penrose, M.D., Petit, J., Serna, M.: Approximating layout problems on random
geometric graphs. Journal of Algorithms 39 (2001) 2001

14. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3)
(2002) 313–356

15. Sagan, H.: Space-Filling Curves. Springer-Verlag (1994)

16. Velho, L., de Miranda Gomes, J.: Digital halftoning with space filling curves. In: ACM
SIGGRAPH. (1991) 81–90

17. Lindstrom, P., Pascucci, V.: Visualization of large terrains made easy. IEEE Visualization
(2001) 363–370

18. Pascucci, V., Frank, R.J.: Global static indexing for real-time exploration of very large reg-
ular grids. In: Supercomputing. (2001)

19. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves.
IEEE Transactions on Image Processing 5(5) (1996) 794–797

20. Wierum, J.M.: Logarithmic path-length in space-filling curves. In: 14th Canadian Confer-
ence on Computational Geometry. (2002) 22–26

21. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
Communications of ACM 31 (1988) 1116–1127

22. Yoon, S.E., Manocha, D.: Cache-efficient layouts of bounding volume hierarchies. Computer
Graphics Forum (Eurographics) 25(3) (2006) 507–516

23. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear
space. Inf. Process. Lett. 6 (1977) 80–82

24. Diks, K., Djidjev, H., Sýkora, O., Vrto, I.: Edge separators of planar and outerplanar graphs
with applications. J. Algorithms 14(2) (1993) 258–279

25. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied
Mathematics 36(2) (1979) 177–189

Page 11 of 12

Appendix

Proof of Lemma 3

logn

∑
l=0

Costl ≤
logn

∑
l=0

c×
√

kn× (
√

2)l × log
n

2l
By Lemma 2

= c
√

kn× [
logn

∑
l=0

(logn× (
√

2)l −
logn

∑
l=0

l × (
√

2)l]

= c
√

kn× (
√

2)logn+1 − (
√

2−1)× logn− (
√

2)

(
√

2−1)2
≤ c

√
kn× (

√
2)× (

√
n)

(
√

2−1)2

=
(c×

√
2k)

(
√

2−1)2
×n

⊓⊔

Page 12 of 12

