
A Novel Page-Based Data Structure for Interactive Walkthroughs

Behzad Sajadi∗ Yan Huang∗ Pablo Diaz-Gutierrez∗ Sung-Eui Yoon+ M. Gopi∗
∗University of California, Irvine

+KAIST

Abstract

Given a data layout of a large walkthrough scene, we present a novel
and simple spatial hierarchy on the disk-pages of the layout that
has notable advantages over a conventional spatial hierarchy on the
scene geometry. Assume that each disk-page consists of a set of
triangles whose bounding boxes are computed. A spatial hierarchy
of the walkthrough space is constructed, not with the given scene,
but with the bounding boxes of disk-pages. The leaf nodes of the
spatial-hierarchy refer directly to the page numbers of the pages of
the bounding box it contains. We call this hierarchy on the pages
as the disk-page hierarchy. We also propose a self-contained disk-
page format that would suit this data structure well. Further, we
present a new cache-oblivious graph-based data layout algorithm
called the 2-factor layout that would preserve the proximity and
orientation properties of the primitives in the layout. Walkthrough
experiments have been conducted on a city scene consisting of over
110M triangles. Our system renders this scene on a laptop within a
one pixel projection error at over 20 fps with simple texture substi-
tution based simplification of distant objects, and with no explicit
data/cache management.

Keywords: walkthrough systems, data layouts, spatial data struc-
tures, out-of-core algorithms

1 Introduction

In large scale walkthrough systems, much of the recent works
mainly focus on the transfer bottleneck of massive data from hard-
disk to the main memory. In this context, many out-of-core ren-
dering methods, and a few algorithms for data layout on disks for
efficient access have been proposed. The out-of-core rendering
systems, in addition to their implementation of sophisticated tech-
niques for culling, simplification, GPU-based rendering, etc., have
to work on cache management of data for interactive out-of-core
processing of massive data. The data layout methods assume a spe-
cific access pattern of the application and compute the layout of the
data that would most likely suit the application. But most of the
current rendering systems do not usually take data layout on the
disk into account. For example, assume that the data layout scheme
expects three blocks of data, say A, B, and C to be requested to-
gether by the renderer and hence has laid A, B, C, in that order,
on the disk. But the renderer, although requires A, B, and C at the
same time, oblivious of the actual layout of these data, requests in
the order C, B, A. This increases the seek time of these blocks from
the disk. Thus it is obvious that this cycle of symbiotic relationship
between the rendering system and the data layout is not complete
until the rendering system fine tunes its data access pattern based
on the data layouts.

In this paper, we present a very simple data structure on any given
(good) layout called the disk-page hierarchies which can be used
directly by the rendering system. In other words, first we compute
the data layout based on the application needs, then we compute the
data structure used by the application on these layouts in order for
the application to make the best use of the layout. There are two dis-
tinct goals of this data structure: to reduce the seek/transfer time of
data from the disk, and to reduce the data management time of the
operating system. Further, we also believe that this data structure
will make the design of any walkthrough system extremely simple
and elegant.

Figure 1: Comparison of the workflow in traditional approach
(top) and our approach (bottom)

In essence, disk-page hierarchy can be built as follows: Let us as-
sume that the primitives (triangles) of the walkthrough scene are
clustered in terms of their spatial proximity, and they are laid lin-
early on the disk in multiple pages. Each page consists of a set of
(related) triangles and hence information like bounding box can be
computed for each page. A disk page K-d tree, for example, is a
K-d tree on these bounding boxes of the disk pages. The leaf nodes
of the K-d tree will have pointers to the disk-pages, and not indi-
vidual triangles. So this data structure is not strictly on the original
scene, but on the bounding boxes of the primitives contained in the
disk-pages. A simple out-of-core walkthrough rendering system
can be build easily around this disk-page K-d tree structure. This
system will request multiple disk-pages worth of primitives, rather
than any other grouping that may not have any relationship to how
the primitives are stored on disk. Note that any data structure (e.g.
an octree) that is used by the application can be converted to a disk-
page hierarchy, without restrictions.

Since the requests are in the form of disk-page numbers, they can
be ordered to achieve sequential access of the data, thus minimizing
the data seek and transfer time. Second, since all the data in each
page is requested (in other words, requests start and end in page
boundaries), the operating system can copy the entire page to the
data buffer requested by the application. Eliminating partial-page
data transfers brings down the data/cache management cost of the
operating system to the minimum.

Conceptually, the application dictates the spatial hierarchy of the
scene, which is used by the disk-layout algorithms to find layouts of
the spatial data structures used by the application. On the contrary,
the proposed disk-page hierarchies are spatial data structures on
the layout that is used by the application. This simple change in
notion results in tremendous simplicity in the implementation of
a walkthrough system and relieves the user from complex cache
management and other system issues.

Following are the contributions of this paper:

• a novel data structure that uses disk-pages as primitives.

• a new disk-layout scheme called 2-factor layouts.

• a simple renderer that does not use very sophisticated
simplification/primitive-reduction techniques or any cache
management technique but just uses the disk-page hierarchies
to achieve an interactive walkthrough performance of over 20
fps on a data set that has over 110 million triangles on a lap-
top.

2 Related Work

2.1 Layouts

Computing specific layouts for efficient rendering and processing
has received considerable attention in computer graphics in recent
years.

Rendering sequences: In the context of rendering, Deer-
ing [Deering 1995] pioneered the computation and use of layouts of
triangles and vertices, called rendering sequences or triangle strips.
Hoppe [1999] cast the computation of rendering sequences as a dis-
crete optimization with a cost function. He particularly derived the
cost function for a specific vertex buffer size used in a GPU. This
layout can be classified as a cache-aware layout since the layout
is optimized for a particular cache parameter. Diaz-Gutierrez et
al. [2005a; 2006] presented a graph based algorithm for general-
ized cache oblivious layout of triangles for rendering and geometry
processing. Recently, Sander et al. [2007] designed a fast triangle
reordering method to compute a cache-aware layout for a vertex
cache size depending on a GPU.

Processing sequences: Isenburg et al. [2003] proposed pro-
cessing sequences as a generalization of rendering sequences to
various kinds of large-data processing. This processing sequence
can be stored as an indexed mesh, streaming mesh. Streaming
meshes are represented as interleaved triangles and vertices that
can be streamed through a small buffer [Isenburg and Lindstrom
2005]. These representations are particularly useful for off-line ap-
plications, e.g., simplification and compression, that can adapt their
runtime computations to a fixed ordering. We present a similar in-
dexed mesh storage format in which vertices may be duplicated
across different pages, while a triangle is represented only once.

Cache-oblivious layouts: Many algorithms use space-filling
curves [Sagan 1994] to compute cache-friendly layouts of grids.
These layouts have been widely used to improve the performance of
image processing [Velho and de Miranda Gomes 1991] and terrain
visualization [Lindstrom and Pascucci 2001; Pascucci and Frank
2001]. However, space-filling curves are mainly used for uniform
grid, image, and volumes that have uniform structures. Yoon et
al. [2005; 2006] proposed a generalized cache-oblivious layout of
a mesh or a graph for efficient rendering and processing of massive
models. In this paper, we extend the quadrilateral/tetrahedral se-
quencing algorithm presented by [Diaz-Gutierrez and Gopi 2005]
to present a graph based cache-oblivious data layout scheme called
the 2-factor layouts.

2.2 Spatial Hierarchies

Various spatial hierarchies such as k-d trees and bounding volume
hierarchies have been widely used to improve the performance of
various applications including rendering, culling, and collision de-
tection. K-d trees [Bentley 1975] have been widely used in ray

tracing of static models due to its simplicity of construction and its
high culling efficiency for ray-objects intersection tests. Bounding
volume hierarchies are also used in visibility culling and collision
detection [Lin and Manocha 2003; Teschner et al. 2005].

Various top-down and bottom-up construction methods for spatial
hierarchies have been designed [Walter et al. 2008]. Also, fast con-
struction methods for k-d trees and other spatial hierarchies have
been proposed [Wald and Havran 2006]. However, the construction
of any spatial hierarchies involves sorting and partitioning prim-
itives of models and thus requires high time complexity [Samet
2006], which may be prohibitive for massive models.

Culling methods: Various culling methods have been designed
to improve the performance of rendering massive models [Yoon
et al. 2008]. Back-face and view-frustum culling techniques are
ones of most widely used culling techniques. For models with high-
depth complexity, visibility culling accelerated by graphics hard-
ware have been proposed [Bittner et al. 2004]. These techniques
typically require spatial hierarchies such as k-d trees and bounding
volume hierarchies.

Multi-resolution hierarchies: Various multi-resolution hierar-
chies have been designed to improve the performance of render-
ing of massive models [Luebke et al. 2002]. For rendering massive
models, multi-resolution hierarchies are constructed by clustering
triangles and computing a representative simplification for the tri-
angles. Therefore, constructing multi-resolution hierarchies is very
similar to constructing spatial hierarchies since these include sort-
ing and partitioning triangles into clusters. There are a few ap-
proach to use a dual hierarchy that can serve as a spatial hierarchy
and multi-resolution hierarchy [Otaduy and Lin 2003].

2.3 Massive Model Rendering

Interactive massive model rendering has been widely researched.
Most of these techniques use image-based [Losasso and Hoppe
2004; Gobbetti and Marton 2005] or geometry-based multi-
resolution representations [Duchaineau et al. 1997; Cignoni et al.
2004] to support interactive performance of massive models. Also,
these methods design explicit out-of-core data management tech-
niques [Varadhan and Manocha 2002] and pre-fetching mecha-
nisms [Corrêa et al. 2003] to efficiently deal with massive mod-
els. Although these techniques can provide interactive rendering
performance at runtime, these methods typically require a long pre-
computation time.

2.4 Organization of the paper

In Section 3, a file format that is a sequence of self-contained disk-
pages is proposed. Our disk-page hierarchy data structure, that uses
such a page format, is detailed in Section 4, followed by how this
data structure is used actually in a walkthrough system in Section 5.
Our data structure would work on any given layout. But we can im-
prove the performance of the system using a data layout that would
help any spatial clustering data structure over it. In Section 6, we
propose one such data layout algorithm called the 2-factor layout
scheme. Finally in Section 7, we give details of our implementa-
tion and present our results.

3 File Format

The input file to the walkthrough system consists of a sequence of
disk pages, each of constant size. The primitives in the scene are
grouped together in the form of disk-pages, in a specific format

(Figure 2). Each page consists of a set of triangles and only the
vertices that are referred by those triangles. Other attributes like
normal vector of each vertex in the page and color of each triangle
in the page are also part of the page. Since a vertex may be shared
by triangles in different pages, the shared vertex and its attributes
may be repeated over different pages. But a triangle appears in only
one page in the entire file. The page format is shown in Figure 2.

vertices # faces List of vertices
with attributes

Indexed Triangle
list with attributes

Figure 2: Page format

Our method can not be compared to a traditional K-d tree data struc-
ture on the triangles themselves because such a data structure might
not fit into the main memory for large walkthrough models. How-
ever, it can be compared against a hierarchical data structure on the
scene where only the references to the beginning of the clusters on
the hard disk are kept in the main memory. The fundamental dif-
ference in our approach is in building our hierarchy where we do
not use scene triangle clusters, but how they are laid out on the disk
(Figure 1). Further, our page based representation has the follow-
ing advantages over a hierarchical data structure over the original
mesh:

• The layout and the spatial data structure are independent of
each other in our approach. Therefore this approach can be
combined with any existing layout algorithm.

• This approach uses fixed size pages (by changing the number
of triangles in each page) which can be retrieved efficiently
from the hard disk.

• Information within each page is self-contained. Every triangle
in a page is well-defined without the need for data from any
other page. This property can be made use of for parallel
processing of disk-pages.

• Due to the locality of reference inside the pages usually one
byte is enough for each vertex index.

• Compression can be applied effectively on each page since
page is an atomic unit of access within which the data is ac-
cessed sequentially.

Note that, in our system, we do not use any page compression for
the following two reasons. First, the model is still small compared
to the typical hard-disk space available nowadays, so compression
is not required for storage. Second, the potential advantage of less
loading time with the compressed data might be lost in the time we
have to spend decompressing this data.

This file format is dictated by the consideration to disk-pages rather
than any processing sequence of the meshes. Thus this page for-
mat is conceptually different from other proposed mesh formats
like streaming meshes [Isenburg and Lindstrom 2005]. Thus, the
proposed page format is complementary to, and can be used along
with other mesh formats like streaming meshes. This format can
be used to organize any given set of (even unrelated) triangles into
pages, and does not assume connectivity.

We used disk-pages of size 4KB in our implementation which is a
typical page size used by many operating systems. This page size
can be increased due to the high processing power of nowadays
GPUs and high speed of new hard disks. However, there is a trade
off between using larger page size and optimality of the bounding
box of each page.

3
6

5

4

8

12

102

1

9

7

13

11

1st level

2nd level

2nd level

3rd level

1st K-d tree
level

2nd K-d tree
level

2nd K-d tree
level

3rd K-d tree
level

3rd K-d tree
level

Disk Pages
8, 12

Disk Pages
4

Figure 3: An illustration of disk-page K-d tree hierarchy. It is same
as the familiar K-d tree hierarchy on the walkthrough scene space,
except that there are no more triangles on the scene but bounding
boxes of the set of triangles in each disk-page. The leaf nodes of the
K-d tree refer to these disk-page numbers.

4 Disk Page Hierarchies

Consider a spatial data structure such as a K-d tree of a walkthrough
scene consisting of a collection of triangles. A regular K-d tree of
such an arbitrary collection of triangles should have at least one ref-
erence per triangle or a logical group of triangles in its leaf nodes.
When we choose to render the primitives in a leaf node, we have to
dereference the file locations in which these triangles or group of
triangles are stored, retrieve them, process and render the required
triangles. First, this K-d tree data structure may not fit in the main
memory for large models. Second, the access pattern of these tri-
angles will be based on the model or application, and not in the
order it is stored in the hard-disk, which would lead to unaccept-
able data access and transfer times from disk to the main-memory.
Finally, the dereferenced address may refer to the middle of a disk
page. This will lead to an additional complexity in the time spent
by the operating system to perform byte-level data management in
order to return the data buffer containing just the requested partial
data from the retrieved page. We call this the data-management
time. Our goal is to reduce both the data access/transfer, and also
management times.

Given a layout of the pages, we propose a new data structure called
the disk-page K-d tree hierarchy, in which the leaf nodes do not re-
fer to individual or group of triangles, but the disk-page numbers in
which these triangles appear. This structure lets us directly organize
our data in the form of pages, refer only to these pages, retrieve the
entire page, and render all the triangles in these pages with minimal
processing.

Computation of Disk Page Hierarchy: First, for each disk-page,
the bounding box of the triangles in that page is computed. A K-
d tree structure is built for the walkthrough scene that has these
bounding boxes, and not individual triangles, as primitives. Given
a layout of these pages, the nodes of the K-d tree will refer only to
the page numbers of those pages whose bounding box it contains
(or intersects). Refer to Figure 3 for an illustration of a 2-d disk-
page hierarchy.

Note that bounding boxes of the disk pages might be overlapping
and each bounding box might appear in multiple K-d tree nodes.
However, considering each page to contain around 100 triangles
number of disk pages will be considerably lower than the number
of triangles. Therefore size of the K-d tree is not an issue for even
large models.

Such a data structure can be considered to be a transparent interface
between the application and the data in the hard-drive. Specifically,
the application need not categorize the scene into objects, but just
consider it as a collection of triangles. This may relieve the ap-
plication from expensive pre-processing. On the storage side, the
proposed disk-page hierarchy can work with any ordering of pages

(different layouts), although we will get better performance if the
information in the pages is self-contained (as is in our file format)
and if the data is grouped together based on proximity, which will
result in fewer page references for every K-d tree node. Further,
the memory required to store this disk-page K-d tree is very small
since the reference is to just the disk-page numbers. Finally, since
the unit of reference is disk-pages, the operating system spends less
time in data management and transfer and can do efficient cache
management. Since the bottleneck in a walkthrough system is not
rendering, but memory access and cache management, the disk-
page hierarchy directly addresses this issue by eliminating fragment
accesses to disk pages and enables other improvements as described
below.

5 Data Fetching Algorithm

The data that is in-core are the disk-page hierarchy, bounding box
and the normal cone of the set of triangles contained in each page.
In the rendering process, we use basic view-frustum culling of the
disk-page K-d tree structure. The rest of the nodes have to be ren-
dered. From these nodes, the set of page indices that needs to be
rendered is collected and the duplicates (same page referenced by
multiple nodes) are removed. From this resulting list, the bounding
box of the every page is tested against the view-frustum for finer
culling. The normal cone is tested against the viewing direction for
quick page-level back-face culling. The page indices that remain
are sorted for minimal seek time in the hard-disk, and the requests
to fetch these pages are placed to the operating system. All triangles
in these fetched pages are rendered without further processing. No-
tably, since the requested data start and stop at page boundaries, the
overhead time required to manage the data by the operating system
in terms of partial-page data transfer to the buffer of the application
is completely eliminated.

The disk-page K-d tree data structure and the data fetching algo-
rithm work with any given data layout. Clearly, their performance
will be better if the layout is logically coherent and takes into ac-
count the data access pattern of the application. In other words,
if the pages requested by a K-d tree node are as close as possible,
then the access time can be minimized and the data transfer can be
speeded up. Even from the perspective of cache management poli-
cies of the operating system, pages that are close to each other have
a lower probability of collisions in the hashing function, and hence
a higher probability of cache-hits in future accesses.

There are many data layout schemes, as detailed Section 2. In the
following section, we present a new algorithm for data layout called
the 2-factor layouts, which is a graph based algorithm for a cache-
oblivious layout.

6 Data Layout Algorithm

Consider a weighted graph in which the nodes represent a group of
triangles and the edge weight between the nodes being the distance
between the primitives of the nodes by some metric (like Euclidean
distance or normal cone axis deviation). Any two nodes that may
have to be adjacent to each other in the final layout (depending on
the application) can be connected by an edgThe linear ordering of
the nodes of this weighted graph would give the order in which
these nodes have to be laid out on the disk. Such a linear order
which minimizes the sum of the weights of the edges between the
adjacent nodes in the order can be computed using the following
algorithm, which is an extension of the algorithm to linearly or-
der primitives in quadrilateral and tetrahedral meshes presented in
[Diaz-Gutierrez and Gopi 2005].

In order to find the linear ordering of nodes in a weighted edge

graph, we use a graph matching algorithm. A graph matching cou-
ples every node with at most one of its neighbors. If all nodes are
matched, we call it a perfect matching. The subgraph induced by
the perfect matching is a spanning 1-regular graph (all nodes in
the original graph are present and every node has degree one), also
called a 1-factor of the original graph. A 2-factor of a graph is a
spanning 2-regular subgraph. Since every node has degree two, a
2-factor will consist only of cycles. Some graphs may not have a
2-factor. So our effort to compute a 2-factor in the given weighted
graph may result in a mix of cycles and linear strips of nodes in
the graph. These cycles can be cut, and along with other linear
strips, they can be laid one after the other in sequence to get a linear
ordering of the nodes of the graph. If nodes represent geometric
primitives, this linear ordering would yield a disk layout of these
primitives. If the 2-factor is computed to minimize the sum of the
edge weights of the resulting subgraph, then the linear order would
place two nodes that have smaller edge weight (distance) between
them, close to each other. We compute the 2-factor using a 1-factor
computing algorithm as given below.

The idea for the computation of partial linear ordering of the nodes
in the original graph is to inflate the original graph by substituting a
template node for every node in the original graph. On this inflated
graph, we compute the 1-factor, which automatically gives a par-
tial ordering on the original graph. This partial ordering can then
be used to compute a total ordering of the nodes as done in sev-
eral related papers [Gopi and Eppstein 2004; Diaz-Gutierrez et al.
2005b]. This idea of inflated graph is similar to the one proposed in
[Diaz-Gutierrez and Gopi 2005] for a 4-regular graph. But now, we
extend this method for general graphs. An illustration of this algo-
rithm is given in Figure 4. With the original graph being weighted,
a weight minimizing graph matching would directly give cycles of
nodes that are most likely to be accessed in-order and hence have
to be stored likewise in the disk to maximize the access coherence
pattern.

Ordering using
2-Factor Layouts

Partitioning using
GLA clustering

1 2

3 4 5

6 7

Final Layout: 2 1 6 7 4 5 3

Figure 5: Data Layout Algorithm

The above algorithm is refined further for hierarchical ordering of
large data sets. The proposed data layout algorithm recursively sub-
divides a data set into M partitions using the generalized Lloyd’s al-
gorithm (GLA) with the same clustering function used in the above
graph algorithm for layouts. These partitions are ordered using the
2-factor layout algorithm presented above. The above two steps are
repeated recursively on each partition until the number of primitives
contained in a partition is below a predefined threshold. After the

Original Vertex with Degree 4

Dopes

Duplicates

Figure 4: Template substitution to find linear ordering: (Left) A node in the graph with degree k (4 in figure) is duplicated k times (see
“Duplicates”), and k − 2 more nodes called “dopes” are added. Every dope is connected to every duplicate. This forms a template for
that particular node in the original graph. Right: An example inflated graph for a 4-regular 3-node original graph. An 1-factor (every
node has exactly one selected edge) in the inflated graph means a 2-factor (every node has exactly two selected edges) in the original graph.
This 2-factor imposes cycles in the original graph that gives a partial ordering, which can be converted to a total ordering with appropriate
application dependent heuristics.

tree has been fully expanded, all primitives are placed in a file using
the orders calculated within and between the partitions as described.

The weighting functions between the nodes for clustering (GLA)
as well as ordering (edge weights for our weighted graph) are de-
pendent on the application. For our walkthrough application, the
weighting function is basically the Euclidean distance between the
primitives (or the bounding boxes of group of primitives). Once
the number of triangles within each group is less than a threshold,
the weighting function for linear ordering of primitives is switched
to be the normal deviation between the primitives, producing a
normal-based clustering for easy back-face culling.

7 Implementation and Results

Our data set is a city model consisting of 110 million triangles
which originally consists of 90 million vertices and takes 4528 MB
of disk storage. The converted model in page format consists of
115 million vertices and takes 3814 MB of disk storage without
any compression due to the less space required for vertex index
representation in the self contained page format. From this space
264 MB is used to store the vertex coordinates and normals, 690
MB is used to store the connectivity information with 2-byte ver-
tex indices, and 345 MB is used to store color information for the
triangles.

First, we partition the object space into small work-spaces called
cells, such that the view positions from anywhere within that cell
is equivalent with respect to the image generated by the distant ob-
jects from the viewpoints within that cell. Such distant objects are
rendered to create textures which will be used during interactive
walkthroughs. This fundamental technique of texture substitution
for walkthrough systems has been used by researchers for a long
time since [Aliaga and Lastra 1997]. In our experiment we cre-
ate eight textures (45 degrees of viewing angle each) around each
unit-square cell from its center, by rendering all primitives that are
more than 10 units away (Figure 6). Obvious advantage of this
technique over other simplification/primitive-reduction techniques
is its generality: it can handle virtually any kind of primitives (tri-
angles, points, etc.) of any topology (non-manifold/genus). The
preprocessing time is proportional to the size of the model and is
completely automatic with no manual intervention. In our system,
we have 160 x 160 cells and a total of 160 x 160 x 8 textures with
the total size of 640MB, and it took 20 hours (10 hours split on

two typical desktop computers) to capture all the textures on the
machine described below. Currently, we maintain these textures in-
core. As seen from Figure 7, the textures form a very small part
of the entire image; further, our cell sizes are also very small. So
the projection error in our walkthrough system due to texture-based
simplification is minimal.

For computing the textures, we used a desktop with Quad Core Intel
Xeon Processor E5405 with 2GB memory, nVidia NVS 290 video
card, and a 160GB SATA, 10,000 rpm hard drive.

Scene rendered
as textures

Scene rendered
Using given

scene primitives
(Triangles)

(

1 unit
Radius: 10 units

Figure 6: Texture-Based Simplification

Our disk-page hierarchy can work with any data layout. We tested
our system with three layouts: a layout of the pages formed from
just concatenating all the models in the scene in the specified page
format (Section 3), a 2-factor layout of the same scene (Section 6),
and the cache-oblivious mesh layout by Yoon et al. [2006]. Rewrit-
ing the entire scene (or a 2-factor ordering of the scene) in the ap-
propriate page format took less than 15 minutes of processing (lin-
ear time in the scene size). Once this layout is given, we compute
the bounding box and normal cone of the set of primitives con-
tained in each disk-page, and construct disk-page K-d tree using
the bounding box information. These computations are linear on
the number of disk-pages, and took a total of less than 5 minutes

Figure 7: Images from the walkthrough system: Left: Only the texture; Center: Only the nearby geometry; Right: Both geometry and texture.

for roughly 930,000 pages of the entire scene on the machine de-
scribed below.

For interactive walkthrough rendering and all the pre-processing
operations, except for texture computation, we used a laptop with
the following specifications: Intel Dual Core 2 T7500 2.2GHz,
64bit, 4MB cache, 1GB memory, 120GB 5400 rpm SATA drive
with 8MB cache, and nVidia GeForce 8400 video card, running the
Kubuntu 8.04 operating system. Note that considerable portion of
the 1GB main memory is used to keep the textures and the K-d tree
hierarchy and less than 264 MB of it is remained to be used by the
operating system to cache the disk pages.

The in-memory data consists of the disk-page K-d tree hierarchy
of 96 MB including the bounding box/normal cone of the disk-
pages, and 160 x 160 x 8 textures with a total size of 640MB. In
a laptop with the specifications mentioned above, we achieved on
an average 20 frames per second (FPS) with the original data lay-
out (a raster layout without any reordering) and 27 FPS using the
cache oblivious layout by Yoon et al. [2006] and 28 FPS with the
2-factor layout. The average number of disk pages requested to the
operating system per frame was 2365, while the page level cache
management was done by the operating system. As mentioned be-
fore each disk-page has size 4KB. The renderer performed only
view-frustum culling, limited back-face culling, and texture sub-
stitution for distant objects. With these simple primitive reduction
techniques, the average number of triangles rendered per frame was
around 240,000, not including the triangles required to render the
textures that represent distant objects.

Note that the latest SAS disk drives are nearly three times faster
(15,000 rpm) than the disk-drives in our laptop (5400 rpm); we
did not use any GPU based acceleration technique like trian-
gle strips, any sophisticated simplification algorithm or visibility
culling methods; further, our 2-factor layout is not fully optimized
for this walkthrough application. We also do not use data pre-
fetching or multi-threading of data processing and rendering. With
all these additional improvements, we expect to see a consistent
frame-rate of over 35 fps on walkthrough scenes of similar charac-
teristics and complexity.

8 Conclusion and Future Work

We presented a simple data structure on the page layouts of the
data sets used for walkthrough application. We have shown that
the data structure built on the layouts of the data, rather than on

the data itself, has advantages in both implementation and perfor-
mance of the system. In our walkthrough system, we used a K-d
tree structure on the bounding boxes of the set of primitives in each
disk-page. The preprocessing required for this walkthrough sys-
tem involves texture generation, layout computation, page creation,
and the bounding box/normal cone computation for each page. All
these processes are completely automated since this system can ac-
cept virtually any kind of primitives and geometry in the scene. The
walkthrough system itself is extremely simple – uses only texture
substitution for distant objects as a form of simplification, and does
no explicit cache-management, since this can be done more effi-
ciently by the operating system.

As part of the future work, we have to analyze the disk-page hier-
archy on other data data structures like Octree, and explore other
applications that can make use of this data structure. We also have
to improve our walkthrough system to include simple simplification
techniques like [Luebke and Erikson 1997] (that again works just
with triangle “soups” rather than objects) for better performance.

Note that in this work we do not do our own cache management.
Adding a cache management system to this system and analyzing
the number cache hits and cache misses can be considered as an-
other future work.

Acknowledgements

M. Gopi is supported by the NSF grants CCF-0738401 and CCF-
0811809.

Sung-eui Yoon was supported in part by KAIST & LG seed grants,
MKE/IITA [2008-F-033-01], MKE/IITA u-Learning, MKE digital
mask control, and DAPA & ADD contract(UD080042AD).

References

ALIAGA, D., AND LASTRA, A. 1997. Architectural Walkthroughs
using Portal Textures. In Proc. IEEE Visualization, 355–362.

BENTLEY, J. 1975. Multidimensional binary search trees used for
associative searching. Communications of the ACM 18, 9, 509–
517.

BITTNER, J., WIMMER, M., PIRINGER, H., AND PURGATH-
OFER, W. 2004. Coherent hierarchical culling: Hardware oc-
clusion queries made useful. Computer Graphics Forum (Euro-
graphics) 23, 3, 615–624.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R. 2004. Adaptive TetraPuzzles
– efficient out-of-core construction and visualization of gigantic
polygonal models. ACM Transactions on Graphics 23, 3.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2003.
Visibility-based prefetching for interactive out-of-core render-
ing. In IEEE Symp. on Parallel and Large-Data Visualization
and Graphics), 1–8.

DEERING, M. F. 1995. Geometry compression. In ACM SIG-
GRAPH, 13–20.

DIAZ-GUTIERREZ, P., AND GOPI, M. 2005. Quadrilateral and
tetrahedral mesh stripification using 2-factor partitioning of the
dual graph. The Visual Computer 21, 8-10, 689–697.

DIAZ-GUTIERREZ, P., BHUSHAN, A., GOPI, M., AND PA-
JAROLA, R. 2005. Constrained Strip Generation and Manage-
ment for Efficient Interactive 3D Rendering. In Proc. of Com-
puter Graphics International Conference, 115–121.

DIAZ-GUTIERREZ, P., GOPI, M., AND PAJAROLA, R. 2005. Hi-
erarchiless simplification, stripification, and compression of tri-
angulated two manifolds. In Proc. of EUROGRAPHICS.

DIAZ-GUTIERREZ, P., BHUSHAN, A., GOPI, M., AND PA-
JAROLA, R. 2006. Single Strips for Fast Interactive Rendering.
The Visual Computer 22, 6, 372– 386.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER,
M. C., ALDRICH, C., AND MINEEV-WEINSTEIN, M. B. 1997.
ROAMing Terrain: Real-time Optimally Adapting Meshes. In
Proc. IEEE Visualization, 81–88.

GOBBETTI, E., AND MARTON, F. 2005. Far voxels: A multires-
olution framework for interactive rendering of huge complex 3d
models on commodity graphics forum. In Proc. of ACM SIG-
GRAPH.

GOPI, M., AND EPPSTEIN, D. 2004. Single strip triangulation of
manifolds with arbitrary topology. Computer Graphics Forum
(EUROGRAPHICS) 23, 3, 371–379.

HOPPE, H. 1999. Optimization of mesh locality for transparent
vertex caching. ACM SIGGRAPH, 269–276.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
IEEE Visualization, 231–238.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND
SNOEYINK, J. 2003. Large mesh simplification using process-
ing sequences. IEEE Visualization, 465–472.

LIN, M., AND MANOCHA, D. 2003. Collision and proximity
queries. In Handbook of Discrete and Computational Geometry.

LINDSTROM, P., AND PASCUCCI, V. 2001. Visualization of large
terrains made easy. IEEE Visualization, 363–370.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: Terrain
rendering using nested regular grids. In ACM SIGGRAPH, 269–
776.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simpli-
fication of arbitrary polygonal environments. In SIGGRAPH
’97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 199–208.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2002. Level of Detail for 3D Graphics.
Morgan-Kaufmann.

OTADUY, M. A., AND LIN, M. C. 2003. CLODs: Dual hierarchies
for multiresolution collision detection. Eurographics Symposium
on Geometry Processing, 94–101.

PASCUCCI, V., AND FRANK, R. J. 2001. Global static indexing
for real-time exploration of very large regular grids. In Super-
computing.

SAGAN, H. 1994. Space-Filling Curves. Springer-Verlag.

SAMET, H. 2006. Foundations of MultiDimensional and Metric
Data Structures. Morgan Kaufmann.

SANDER, P. V., NEHAB, D., AND BARCZAK, J. 2007. Fast tri-
angle reordering for vertex locality and reduced overdraw. ACM
Trans. on Graphics (SIGGRAPH) 26, 3, 89.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACH-
MANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
AND VOLINO, P. 2005. Collision detection for deformable ob-
jects. Computer Graphics Forum 19, 1, 61–81.

VARADHAN, G., AND MANOCHA, D. 2002. Out-of-core render-
ing of massive geometric environments. In IEEE Visualization.

VELHO, L., AND DE MIRANDA GOMES, J. 1991. Digital halfton-
ing with space filling curves. In ACM SIGGRAPH, 81–90.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for
ray tracing, and on doing that in O(N log N). In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, 61–69.

WALTER, B., BALA, K., KULKARNI, M., AND PINGALI, K.
2008. Fast agglomerative clustering for rendering. IEEE Symp.
on Interactive Ray Tracing, 81–86.

YOON, S.-E., AND LINDSTROM, P. 2006. Mesh layouts for block-
based caches. IEEE Transactions on Visualization and Computer
Graphics (Proceedings Visualization) 12, 5.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., AND MANOCHA,
D. 2005. Cache-Oblivious Mesh Layouts. ACM Transactions
on Graphics (SIGGRAPH) 24, 3, 886–893.

YOON, S., GOBBETTI, E., KASIK, D., AND MANOCHA, D. 2008.
Real-Time Massive Model Rendering. Morgan & Claypool Pub-
lisher.

