## 물체 지역화와 심층 나선형 인공 신경망을 이용한 이미지 검색

조재형<sup>O</sup>, 윤성의 KAIST 전산학부

dil122001@kaist.ac.kr, sungeui@gmail.com

#### 요 약

본 논문은 최근 이미지 분류 연구에서 우수한 성능을 보이고 있는 심층 나선형 인공 신경망을 이용한 이미지 검색 방법을 제안하고 있다. 심층 나선형 인공 신경망의 중요한 특징 중 하나는, 후반부 은닉층에서 추출한 벡터를 이미지 기술자로 사용시 고차원 개념을 잘 표현할 수 있다는 점이다. 이 특징에서 착안하여, 물체 지역화 기술을 이용해 이미지에서 물체가 있는 영역들을 찾아낸 뒤 해당 영역들에서만 기술자를 추출하였다. 그 결과, 서로 재훈련을 하지 않은 상태에서 심층 나선형 인공 신경망을 이용한 최신 이미지 검색 기술보다 높은 top-4 점수를 UKB 데이터셋으로부터 얻을 수 있었다. 이러한 결과는 물체 영역으로 한정하여 기술자를 추출함으로써 심층 나선형 인공 신경망에서 추출하는 이미지 기술자의 장점을 더욱 부각시킨 점에 기인한 것으로, 실험을 통해 제안한 방식의 우수성을 입증하였다.

#### 1. 서론

이미지 검색은 주어진 질의 이미지와 유사한 이미지들을 찾아내는 기술이다. 이 기술은 질의 이미지가 무엇을 나타내고 있는지 판단하는 기술인 이미지 분류 기술과 얻고자 하는 결과는 다르지만, 두기술 모두 이미지에서 기술자를 추출하여 목적에맞게 사용한다는 공통점이 있다. 기존에는 SIFT[13], GIST[17] 등의 사람의 통찰에 기반해 추출하는 기술자를 사용하여 이미지 검색, 분류를 하는 연구들이 많이 이루어져 왔다 [14, 15, 16]. 더불어 최근에는 심층 나선형 인공 신경망(CNNs) [5]을 이용한 이미지 분류 기술들이 활발하게 연구되고 있으며, 기존기술들보다 높은 분류 정확도를 보이고 있다. CNNs를 분류기로서 사용한 연구뿐만 아니라, CNNs의 은닉층에서 추출한 벡터를 이미지 기술자로서 사용한 연구들도 높은 성능을 보이고 있다 [1].

[1]가 높은 분류 정확도를 보인다는 것은 CNNs에서 추출한 기술자가 이미지의 특징을 잘 나타낸다는 것을 의미한다. 따라서 CNNs에서 추출한 기술자를 이미지 검색 기술에 적용해 보았을 때도 높은 성능을 보인다는 것이 최근 연구에 의해 알려져있다 [2].

[2]에 따르면 CNNs의 7번째 은닉 층에서 추출한 기술자는 이미지의 질감과 같은 저차원의 정보보다는 이미지가 나타내고 있는 개념과 같은 고차원의 정보를 더 잘 나타낸다. 하지만 그림 1 에서 볼 수 있듯이 이미지가 나타내는 개념은 이미지 전체에서 기술자를 추출할 때 보다, 이미지상에서 의미 있는 영역으로 범위를 한정하여 추출할 때 더욱 명확해 진다. 따라서 이 논문에서는 이미지에서 물체가 있

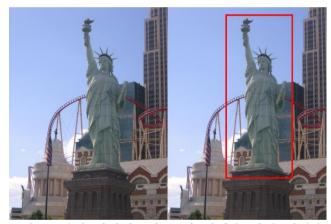


그림 1. 전체 이미지보다 물체 영역을 한정 지었을 때 나타내고자 하는 의미가 더 명확해진다.

는 영역을 찾아내는 물체 지역화 기술과 CNNs 를 사용한 이미지 기술자 추출 방법을 이용하여 이미 지를 검색하는 방법을 제안하고자 한다.

#### 2. 관련 연구

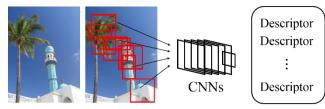
이 논문은 이미지에서 물체를 검출하는 문제를 다룬 논문인 [1]에서 많은 영감을 얻었다. [1]에서는 selective search [11] 방식을 이용하여 물체가 있을 법 한 후보 영역을 검출하고, 각각의 후보 영역들에 대 하여 CNNs 를 사용하여 이미지 기술자를 추출하였 다. 추출된 기술자와 클래스마다 훈련되어 있는 이 진 서포트 벡터 머신을 이용하여 해당 후보 영역이 어떤 물체를 나타내고 있는지 판별한다. 이 방식이 높은 성능을 보일 수 있는 가장 큰 이유는 전체 이 미지에 대한 기술자를 추출하는 대신에 영역을 물체 주위로 한정시켜 추출하여서, 기술자가 더 명확하게 물체를 나타내기 때문이다. 이러한 장점을 이미지 검색에도 적용하기 위하여, 본 논문에서는 [1]과 비슷하게 먼저 후보 영역을 검출한 뒤 각 후보 영역에 대해 이미지 기술자를 추출하였다.

하지만 이미지 검색을 위한 후보 영역 검출에는 selective search 방식이 적절하지 않다. Selective search 는 이미지 분할을 이용해 계층적으로 후보 영역을 제안하는 방식으로, 여러 계층에 걸쳐서 최대한 많 은 후보 영역을 제안한다. 그렇기 때문에 이미지에 포함된 물체를 검출하려 할 때는 효율적인 방식이 다. 하지만 최대한 많은 후보 영역을 제안하는 것을 목표로 하다 보니 물체 영역의 수 보다 물체를 나 타내지 않는, 의미 없는 영역의 수가 훨씬 많게 되 는 현상을 초래한다. 이미지 검색을 위해 기술자를 추출할 때는, 이런 의미 없는 영역으로부터의 기술 자는 오히려 검색 정확도를 낮추는 요인이 된다. 따 라서 모든 후보 영역을 제안 받기 보다는 물체가 있을 법한, 의미 있는 영역만을 제안 받기 위해 물 체도를 추정하여 후보 영역을 제안하는 방식을 사 용하였다 [3]. 이 방식은 인간이 물체를 판별할 때, 대상이 어떤 물체인지 인식하기 전에 형태만으로 물체인지 아닌지를 먼저 판단하는 능력에서 영감을 얻었다. 이미지의 해상도를 변경해가며 영역들로부 터 norm of gradient 를 계산해 물체도를 추정하는 방 식인데, 이 계산을 이진화하여 더욱 가속화 시킴으 로써 보다 효율적인 물체 영역 검출 방식이 되었다.

CNNs 로부터 추출한 이미지 기술자가 이미지 분류에서 좋은 성능을 보이는 것은 기존 연구를 통해 검증된 바 있다 [1]. 더불어 [2]를 통해, 이 기술자가 이미지 검색에도 유용하게 적용될 수 있음이 연구된 바 있다. [2]에서는 CNNs 의 5, 6, 7 번째 은닉층으로부터 추출한 기술자들을 이용해 검색 정확도를 평가하였다. 그 결과, 5 번째 은닉층에서 추출한 기술자는 이미지의 질감과 같은 저차원 정보를잘 나타내고, 7 번째 은닉층에서 추출한 기술자는 이미지가 나타내는 물체, 개념과 같은 고차원 정보를 잘 나타낸다는 것을 밝혔다. 또한 CNNs 에서 추출한 기술자는 주성분 분석을 통해 차원을 축소했을 때, 기존에 사용되던 기술자들에 비해 검색 정확도가 덜 하락한다는 것을 밝혔다.

## 3. 물체 지역화와 심층 나선형 인공 신경망 을 이용한 이미지 검색 방법

이 장에서는 먼저 물체 지역화와 CNNs 를 이용해 이미지로부터 기술자를 추출하는 방법에 대해설명하고, 추출된 기술자를 이용해 이미지들 간의유사도를 측정하기 위한 거리 측정 방법을 설명한다.



1. 입력 2. 물체 후보 3. CNNs 를 4. 이미지 이미지 영역 검출 이용한 기술자 기술자 집합 (상위 k개) 추출 (k×4096)

그림 2. 입력 이미지로부터 이미지 기술자 집합을 추출하는 과정

#### 3.1 기술자 추출 방법

기술자 추출 과정은 크게 물체 지역화 기술을 이용하여 물체 후보 영역을 검출하는 단계와 CNNs 를 이용하여 물체 후보 영역들로부터 기술자를 추 출하는 단계로 나눌 수 있다. 먼저 물체 후보 영역 검출 단계에서는 [3]에서 제안한 BING 물체도 예측 방식을 사용하였다. 2 장에서 설명한 바와 같이 BING 물체도 예측 방식은 각 후보 영역들에 대하 여 물체도를 수치적으로 추정하기 때문에, 물체도가 높은 영역들만 선택적으로 사용할 수 있다. 또한 물 체도 예측에 필요한 연산을 이진화하여 후보 영역 제안 속도를 가속화시켰기 때문에. [1]에서 후보 영 역 검출에 사용한 selective search 방식에 비하여 검 출 속도가 훨씬 빠르다. 이러한 장점들 덕분에, 기 술자의 크기와 처리 속도가 중요한 이미지 검색에 는 BING 물체도 예측 방식이 더욱 적합하므로 본 연구에서는 이 방식을 이용하여 후보 영역을 추출 하였다

BING 물체도 예측 방식을 사용하면 많은 물체 후보 영역을 검출할 수 있고, 각각의 후보 영역에 대하여 수치적인 물체도 값을 얻을 수 있다. 하지만 물체 후보 영역 중에는 실제로 물체를 나타내는 영역 보다 이미지를 대표할 수 없는, 의미 없는 영역의 비율이 훨씬 크다. 따라서 이미지를 대표할 수 있는 물체 영역들에서만 기술자를 추출하기 위하여물체도 값을 기준으로 영역들을 정렬시킨 뒤, 물체도 값이 가장 큰 k 개의 영역들에서만 기술자를 추출하였다.

영역으로부터의 이미지 기술자 추출은 Caffe 에서 제공하는 모델인 BVLC Reference CaffeNet을 사용하였다 [4]. 이 모델은 AlexNet[5]을 ILSVRC 2012[6]로 학습시킨 CNNs 모델이다. 이 모델의 출력 층은 1000 차원 벡터인데 본 논문에서는 [1], [2]처럼 출력 층 이전의 은닉 층들로부터 얻을 수 있는 4096 차원 벡터를 이미지 기술자로서 사용하였다. 그림 2에는 이미지로부터 이미지 기술자 집합을 추출하는 과정이 요약 되어있다.

#### 3.2 이미지 간의 거리 측정 방법

위에서 설명한 방법으로 이미지 기술자를 추출





그림 3. 이미지간 거리 계산 방법의 시각화 왼쪽 이미지와 오른쪽 이미지의 물체 영역들 중, 빨 간색으로 표시한 물체 영역간의 L1 거리가 가장 가 깝다. 따라서 이 물체 영역간의 거리가 두 이미지간 의 거리를 나타내게 된다.

하면 각각의 이미지는 k 개의 4096 차원 벡터로 나타내어지게 된다. 이미지들간의 유사도를 측정하기위해서는 이미지 기술자들 간의 거리를 측정할 수있어야 한다. 따라서 본 논문에서는 이미지 기술자들의 집합 X, Y 간의 거리를 다음과 같이 정의하였다.

#### $dist(X, Y) = min(d(x, y)) \forall x \in X \forall y \in Y$

여기서 d(x,y)는 두 벡터간의 거리를 나타내고, 본 논문에서는 여러 거리 계산법 중 L1 거리 계산 법을 사용하였다. 각각의 이미지 기술자들은 전체 이미지 안에서 물체 영역을 나타내고 있다. 따라서 그림 3 에서 볼 수 있듯이 위의 거리 정의는 두 이 미지간의 거리를 각각이 포함하고 있는 물체들 중 가장 비슷한 물체들 간의 거리로 나타내겠다는 것 을 의미한다.

또한 본 논문에서는 위의 거리 계산 방식을 투표 방식에도 적용시켜보았다. 투표 방식 중, 거리가가장 가까운 한 후보에만 투표하는 대신 여러 후보에게 가우시안 확률 값에 따라 투표 점수를 다르게부여하는 soft voting [8] 방식에서 영감을 얻어, 각각의 물체 영역들로부터 가장 가까운 k 개의 물체 영역들을 찾고, 찾아진 물체 영역들이 포함된 이미지에 순위에 맞는 투표 점수를 부여하였다. 즉, 한 번의 질의에 총 kxk 개의 투표가 이루어지고, 각각의투표는 질의 물체 영역과 가까운 순위에 따라 점수를 다르게 부여 받게 된다.

#### 4. 실험 결과 및 분석

3 장에서 설명했듯이 이 방법은 BING 물체도 예측 방식과 CNNs 를 이용하여 이미지 기술자를 추출한다. 따라서 Python 에서 구현된 BING 물체도 예측방식 코드[3, 7]와 Caffe 에서 제공되는 R-CNN[1]에기반한 물체 검출 코드를 구현에 이용하였다.

실험에는 INRIA Holidays dataset 을 사용하였다 [9]. 이 데이터셋은 500 여 가지의 물체와 장소를 찍은 사진들로 구성되어 있으며 총 1491 장의 사진을 담고 있다. 평가는 실험 이미지들을 질의 이미지와의유사도를 기준으로 정렬했을 때, 정답 이미지들의순위 값에 의해 계산되는 mAP 점수를 사용하여 이루어진다. 그리고 최종 평가에는 INRIA Holiday dataset 과 UKB dataset [10]을 사용하였다. UKB 데이터셋은 2550 가지의 물체를 실내에서 찍은 10200장의 사진들로 구성되어있으며, 평가는 질의 이미지와 가장 가까운 4 장의 이미지를 찾아, 그 안에 정답 이미지가 얼마나 포함되어 있는지 판단하는 top-4 점수를 사용한다.

제안된 이미지 기술자 추출 방법에는 CNNs 로부터 이미지 기술자를 추출할 때 사용하는 은닉 층의 선택과 이미지를 기술자의 집합으로 나타낼 때 사용하는 물체 영역의 개수 k, 이 두 가지 변수가 존재한다. 따라서, 이 장에서는 먼저 사용하는 은닉층에 따른 성능 차이를 분석하고 물체 영역의 개수k 값에 따른 성능의 변화를 분석 한다. 그리고 마지막으로 현재 본 논문에서 제안하는 방식의 성능과 다른 최신 방식들의 성능을 비교분석 한다.

### 4.1 이미지 기술자를 추출하는 은닉 층에 따른 성능 분석

[2]에서도 CNNs 를 이용해 이미지 기술자를 추출하였으며, 이 때 기술자를 추출하는 은닉 층에 따라서 성능이 바뀌었다. 따라서 본 논문에서도 어떤 은닉 층이 본 논문에서 제안하는 기술자 추출 방식에 적합한지 알아보기 위해 실험을 해 보았다. 물체 영역의 개수 k는 10으로 고정하였고 투표방식은 사용하지 않고 거리 비교 만으로 이미지 검색 성능을 측정하였다. 5번째(pool5), 6번째(fc6), 그리고 7번째(fc7) 은닉 층을 비교해 보았고, 결과는 다음과 같다.

표 1. 은닉 충에 따른 검색 성능 비교 (INRIA Holidays dataset)

| 은닉 충   | pool5   | fc6     | fc7     |
|--------|---------|---------|---------|
| mAP 점수 | 0.25247 | 0.49352 | 0.56119 |

위의 표 1에서 볼 수 있듯이 후반부의 은닉 층으로 갈수록 검색 정확도가 올라가는 것을 볼 수 있다. [2]에 따르면 5 번째 은닉 층은 이미지의 질 감과 같은 저차원 정보를 잘 나타내고, 7 번째 은닉 층은 이미지가 나타내는 물체, 개념과 같은 고차원 정보를 잘 나타낸다. 또한 [2]의 성능 분석에서는 6 번째 은닉 층의 성능이 가장 높았고, 5 번째 은닉 층의 성능이 본 논문의 결과처럼 눈에 띄게 낮지 않았다. [2]와 본 논문의 방식이 이런 추세의 차이를 보이는 이유는, 물체 지역화 기술의 사용 때문이다. [2]에서는 전체 이미지에서 기술자를 추출하기 때문에 풍경 사진에서는 저차원의 질감정보를, 물체 사진에서는 고차원의 물체 정보를 잘나타낼 필요가 있다. 따라서 이 두 정보를 적절히

담고 있는 6 번째 은닉 층이 가장 높은 성능을 보인다. 하지만 본 논문이 제안하는 방식에서는 물체지역화 기술을 이용하여 기술자를 추출하는 영역을물체 영역으로 한정한다. 즉, 5 번째 은닉 층은 저차원의 질감 정보를 나타내기 때문에 물체 영역에서 해당 물체들간의 고차원 정보의 차이를 잘 구별하지 못한다. 따라서 본 논문이 제안하는 기술자추출 방법에서는 물체 영역 안에서 고차원의 특징정보를 잘 구별하는 7 번째 은닉 층이 적합하다는 것을 알 수 있다. 이러한 이유로 이후의 실험에서는 모두 7번째 은닉 층에서 기술자를 추출하여 사용하였다.

# 4.2 이미지를 나타내는 물체 영역의 개수에 따른 성능 분석

다음으로는 이미지를 나타내기 위해 기술자를 추출하는 물체 영역의 수 k에 따른 이미지 검색 성능을 분석한다. 이 실험에서도 투표 방식을 사용하지 않고 거리 비교만으로 검색 성능을 측정하였다. 위에서 설명했듯이 기술자는 7 번째 은닉 층에서추출하였다. k 값은 5, 10, 15, 25, 50 으로 바꾸면서실험하였고, 그 결과는 다음과 같다.

표 2. k 값에 따른 검색 성능 비교 (INRIA Holidays dataset)

| k   | 5      | 10     | 15     | 25     | 50     |
|-----|--------|--------|--------|--------|--------|
| mAP | 0.5226 | 0.5612 | 0.5933 | 0.6150 | 0.6172 |

표 2 를 통해 알 수 있듯이 사용하는 물체 영역 의 수가 많아질수록 mAP 점수가 증가한다. 하지만 k 값이 커질수록 증가하는 mAP 점수의 폭은 점점 줄어든다. 그 이유는 물체 영역들을 물체도 값이 높 은 영역부터 순서대로 사용하기 때문에 의미 있는 후보 영역들은 이미 k 값이 작을 때부터 이미지를 나타내기 위해 사용되고 있기 때문이다. 따라서 k 값이 커져서 추가되는 영역이 생기더라도 그 영역 들이 새로운 의미 있는 물체를 나타내는 경우가 점 점 드물어 진다. 그러므로 k 값이 커짐에 따라 mAP 점수의 증가 폭이 줄어들게 되는 것이다. 또 한 k 값이 크다는 것은 하나의 이미지를 나타내기 위해 사용되는 이미지 기술자의 개수가 많다는 것 이므로, 하나의 이미지를 나타내는 기술자 집합의 크기가 크다는 것을 의미한다. 따라서 효율적인 이 미지 검색을 위해서는 mAP 점수만을 보고 높은 k 값을 사용하기 보다는, 목표 데이터셋의 크기와 사 용하는 시스템의 성능을 고려하여 검색 정확도와 기술자 집합의 크기를 절충하는 k 값을 선택하는 것이 중요하다.

#### 4.3 최신 기술들과의 성능 비교 분석

마지막으로 본 논문에서 제안하는 방식과 다른

최신 이미지 검색 기술들의 성능을 비교해 보았다. 성능 비교에는 INRIA Holidays dataset 을 이용한 mAP 점수와 UKB dataset 을 이용한 top-4 점수를 사용하였 다. 현재 UKB dataset 에서 가장 좋은 성능을 보이는 것으로 알려진 Sparse-coded features[12]와 INRIA Holidays dataset 에서 가장 좋은 성능을 보이는 것으 로 알려진 Neural codes[2]와 비교를 해 보았다. 추가 적으로 Neural codes 기술은 본 논문과 비슷하게 CNNs 를 이용하여 추출한 이미지 기술자를 사용한 이미지 검색 방식이므로 더 자세히 성능 비교를 하 였다.

표 3. 최신 검색 기술들과의 성능 비교

| 기술자                                 | UKB   | Holidays  |
|-------------------------------------|-------|-----------|
| Ours(without voting)                | 3.28  | 0.617     |
| Ours(with voting)                   | 3.53  | 0.738     |
| Neural codes(without retraining)[2] | 3.43  | 0.749**   |
| Neural codes(retraining on          | 3.56* | 0.754**   |
| turntable views)[2]                 |       |           |
| Neural codes(retraining on          | 3.29  | 0.793*,** |
| Landmarks dataset)[2]               |       |           |
| Sparsed-coded features[12]          | 3.76  | 0.767     |

\*가 표시된 값은 CNNs 를 목표 데이터셋에 의존적 으로 재훈련하여 얻은 결과임.

\*\*가 표시된 값은 Holidays dataset 에서 정방향이 아닌 사진들을 수작업으로 정방향으로 회전시킨, 수정된 dataset 에서 얻은 결과임.

표 3에서 볼 수 있듯이 본 논문의 방식은 투표 방식을 적용함으로써 검색 정확도를 향상시켰지만 현재 최신 기술들의 성능을 넘지는 못했다. 하지만 본 논문의 방식처럼 CNNs 로부터 추출한 기술자를 사용하여 최고의 성능을 보이고 있는 Neural codes 방식과 조금 더 자세히 비교를 해 보고자 한다. 먼 저 Holidays 에서 가장 높은 성능을 보이는 Neural codes 방식은 기술자 추출에 사용하는 CNNs 를 Holidays 데이터셋에 보다 적합하도록 fine-tuning 하 기 위해 Landmarks 데이터셋으로 CNNs를 재훈련 하였다. 그 결과 Holidays 에서의 mAP 점수는 크게 증가하였지만, 오히려 UKB 에서의 top-4 점수는 감 소하였다. 또한 UKB에 적합하도록 CNNs를 재훈 련 한 경우에도 Holidays 에서의 점수는 큰 변화가 없지만 UKB 에서의 top-4 점수는 크게 증가한 것을 볼 수 있다. 여기서 알 수 있듯이 CNNs를 목표로 하는 데이터셋과 유사한 데이터셋으로 재훈련 할 경우, 위에서 UKB의 top-4 점수가 감소하는 경우 처럼 기술자의 일반성이 떨어지거나 과잉적합이 발 생할 수 있지만, 평가를 진행하는 대상인 목표 데 이터셋에서 만큼은 큰 폭의 성능 향상을 보여준다. CNNs 의 재훈련이 성능에 큰 영향을 미치기 때문 에, 목표 데이터셋에 맞춰 재훈련을 하지 않은 현 재의 본 논문의 방식으로는 각각의 데이터셋에 맞 게 재훈련 된 Neural codes 의 성능을 뛰어넘지는 못 했다. 하지만 서로 재훈련이 되지 않은 상태에서의

성능을 비교하면 투표 방식을 사용한 본 논문의 방식이 UKB 데이터셋에서 Neural codes 방식 보다 더좋은 성능을 보인다. 오히려 본 논문에서 제안하는 방식이 UKB에 맞춰 재훈련 된 Neural codes에 더가까운 성능을 보인다. 또한 서로 재훈련 되지 않은 상태에서 Holidays 데이터셋의 점수는 본 논문의 방식이 조금 낮게 측정되지만, 사실 Neural codes 방식의 mAP 점수는 Holidays 데이터셋에서 성능을 측정할 때 데이터셋에 포함된 회전된 사진들을 임의로 모두 정방향으로 만든 뒤 측정한 결과이다. 이점을 고려한다면 서로 재훈련을 하지 않은 상태에서의 Holidays 데이터셋에 대한 성능은 비슷하다고할 수 있다. 결과적으로, 재훈련 전의 상태를 비교한다면 본 논문에서 제안하는 방식이 Neural codes 방식보다 좋은 성능을 보인다.

#### 5. 결론

본 논문에서는 물체 지역화 기술을 이용하여 심 층 나선형 인공 신경망으로부터 추출하는 기술자의 장점을 부각시킴으로써 검색 정확도를 향상시킬 수 있는 방식을 제안하였다. 본 논문에서 제안하는 방 식처럼 심층 나선형 인공 신경망을 이용해 이미지 기술자를 추출하고, 현재 Holidays 데이터셋에서 최 고의 성능을 보이는 Neural codes 방식과의 비교를 통해 제안하는 기술의 성능을 평가하였다. 아직까지 는 인공 신경망을 목적에 맞게 재훈련 하지 못했기 때문에 최종적인 성능 비교는 하지 못하였다. 하지 만 서로 재훈련 하지 않은 상태를 비교하였을 때, 투표 방식을 적용한 본 논문의 방식이 Neural codes 방식 보다 더 좋은 성능을 보인다. 또한 UKB 데이 터셋에서의 성능은 본 논문의 방식이 이미 재훈련 을 한 Neural codes 방식과 가까운 성능을 보이고 있 다. 현재 많은 심층 나선형 인공 신경망을 사용하는 기술들이 재훈련을 통해 큰 폭의 성능 향상을 보이 고 있으므로, 본 논문에서 제안하는 방식도 목적에 맞는 데이터셋을 찾아 인공 신경망을 재훈련 한다 면 지금보다 더욱 높은 검색 정확도를 얻을 수 있 을 것이다. 또한 본 논문에서 제안하는 방식의 검색 정확도는 물체 영역 검출 성능에 크게 의존적이므 로, 현재보다 고성능의 물체 지역화 기술이 개발된 다면 본 논문에서 제안한 방식의 검색 정확도 또한 더욱 높아질 것이다.

#### 감사의 글

리뷰를 도와주신 김동혁, 윤웅직, 이윤석님께 감사 드립니다.

본 연구는 미래창조과학부 및 정보통신기술연구진흥센터의 정보통신·방송 연구개발사업의 일환으로수행하였음. [R0126-15-1108, 대용량 이미지 검색과 시제품 렌더링을 위한 근접질의 SW 개발]

이 논문은 2015 년도 정부(미래창조과학부)의 재원 으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(No.2011-0030079)

#### 참고문헌

- [1] R. Girshick, J. Donahue, T. Darrell, J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
- [2] A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, "Neural Codes for Image Retrieval", European Conference on Computer Vision (ECCV), 2014.
- [3] M. Cheng, Z. Zhang, W. Lin, P. Torr, "BING: Binarized Normed Gradients for Objectness Estimation at 300fps", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.
- [4] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. <a href="http://caffe.berkelevvision.org/">http://caffe.berkelevvision.org/</a>, 2013.
- [5] A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks", NIPS, 2012.
- [6] J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Competition 2012 (ILSVRC2012). http://www.imagenet.org/challenges/LSVRC/2012/.
- [7] A. Ferrari, BING-Objectness, <a href="https://github.com/alessandroferrari/BING-Objectness">https://github.com/alessandroferrari/BING-Objectness</a>, 2015.
- [8] H. B. Mitchell, P. A. Schaefer, "A "Soft" K-Nearest Neighbor Voting Scheme", International Journal of Intelligent Systems, Volume 16, Issue 4, APR 2001.
- [9] Jegou, H., Douze, M., INRIA Holidays dataset, <a href="http://lear.inrialpes.fr/people/jegou/data.php">http://lear.inrialpes.fr/people/jegou/data.php</a>, 2008.
- [10] Nist'er, D., Stew'enius, H., "Scalable recognition with a vocabulary tree", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
- [11] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, "Selective search for object recognition", IJCV, 2013.
- [12] Ge, T., Ke, Q., Sun, J., "Sparse-coded features for image retrieval", British Machine Vision Conference, 2013.
- [13] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", IJCV, 2004.
- [14] S. Lazebnik, C. Schmid, J. Ponce, "Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
- [15] Y. Zhang, Z. Jia, T. Chen, "Image retrieval with geometry-preserving visual phrases", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
- [16] X. Shen, Z. Lin, J. Brandt, S. Avidan, Y. Wu, "Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking", IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[17] A. Oliva, A. Torralba, "Modeling the shape of the scene: a holistic representation of the spatial envelope", International Journal of Computer Vision, Vol. 42(3): 145-175, 2001.