CS680: Scalable Global Illumination Summary of Under. CG related to CS680

Sung-Eui Yoon (윤성의)

Course URL:
http://jupiter.kaist.ac.kr/~sungeui/CG

Overview of Computer Graphics

- We will discuss various parts of computer graphics

Computer vision inverts the process Image processing deals with images

Lecture 2: Screen Space \& World Space

Mapping from World to Screen

Screen

Screen Space

- Graphical image is presented by setting colors for a set of discrete samples called "pixels"
- Pixels displayed on screen in windows
- Pixels are addressed as 2D arrays
- Indices are "screenspace" coordinates

(0,height-1) (width-1, height-1)

OpenGL Coordinate System

Pixel Independence

- Often easier to structure graphical objects independent of screen or window sizes
- Define graphical objects in "world-space"

Lecture: 2D Transformation

2D Geometric Transforms

- Functions to map points from one place to another
- Geometric transforms can be applied to
- Drawing primitives (points, lines, conics, triangles)
- Pixel coordinates of an image

Demo

KAIST

Translation

- Translations have the following form:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{t}_{\mathbf{x}} \\
& \mathbf{y}^{\prime}=\mathbf{y}+\mathbf{t}_{\mathbf{y}}
\end{aligned} \quad\left[\begin{array}{l}
\mathbf{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{x} \\
\mathrm{y}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}}
\end{array}\right]
$$

- inverse function: undoes the translation:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}^{\prime}-\mathbf{t}_{\mathrm{x}} \\
& \mathbf{y}=\mathbf{y}^{\prime}-\mathbf{t}_{\mathbf{y}}
\end{aligned}
$$

- identity: leaves every point unchanged

$$
\begin{aligned}
& x^{\prime}=x+0 \\
& y^{\prime}=y+0
\end{aligned}
$$

2D Rotations

- Another group - rotation about the origin:

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=R\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
R^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
R_{\theta=0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Rotations in Series

- We want to rotate the object 30 degree and, then, 60 degree

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\left.\begin{array}{cc}
\cos (60) & -\sin (60) \\
\sin (60) & \cos (60)
\end{array}\right]\left[\begin{array}{cc}
\cos (30) & -\sin (30) \\
\sin (30) & \cos (30)
\end{array}\right]\left[\begin{array}{c}
x \\
y
\end{array}\right] \\
\begin{array}{c}
\text { We can merge } \\
\text { multiple rotations into } \\
\text { one rotation matrix }
\end{array} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos (90) & -\sin (90)
\end{array}\right]\left[\begin{array}{c}
x \\
\sin (90) \\
\cos (90)
\end{array}\right]} \\
y
\end{array}\right]}
\end{gathered}
$$

Euclidean Transforms

- Euclidean Group
- Translations + rotations
- Rigid body transforms
- Properties:
- Preserve distances

- Preserve angles
- How do you represent these functions?

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

Problems with this Form

- Translation and rotation considered separately
- Typically we perform a series of rotations and translations to place objects in world space
- It's inconvenient and inefficient in the previous form
- I nverse transform involves multiple steps
- How can we address it?
- How can we represent the translation as a matrix multiplication?

Homogeneous Coordinates

- Consider our 2D plane as a subspace within 3D

(x, y)

(x, y, z)

Matrix Multiplications and Homogeneous Coordinates

- Can use any planar subspace that does not contain the origin
- Assume our 2D space lies on the 3D plane z=1
- Now we can express all Euclidean transforms in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling

- S is a scaling factor

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Frame Buffer

- Contains an image for the final visualization
- Color buffer, depth buffer, etc.
- Buffer initialization
- gIClear(GL_COLOR_BUFFER_BIT);
- glClearColor (..);
- Buffer creation
- glutl nitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
- Buffer swap
- glutSwapBuffers();

Lecture: Modeling Transformation

The Classic Rendering Pipeline

- Object primitives defined by vertices fed in at the top
- Pixels come out in the display at the bottom
- Commonly have multiple primitives in various stages of rendering

Modeling Transforms

Modeling Transformations

- Start with 3D models defined in modeling spaces with their own modeling frames: $\dot{m}_{1}^{\dagger}, \dot{m}_{2}^{t}, \ldots, \dot{m}_{n}^{\dagger}$
- Modeling transformations orient models within a common coordinate frame called world space, w^{t}
- All objects, light sources, and the camera live in world space
- Trivial rejection attempts to eliminate objects that cannot possibly
 be seen
- An optimization

KAIST

Illumination

Modeling
Transformations

- I Iluminate potentially visible objects
- Final rendered color is determined by object's orientation, its material properties, and the light sources in the scene

KAIST

Viewing Transformations

- Maps points from world space to eye space:

$$
e^{t}=w^{t} V
$$

- Viewing position is transformed to the origin
- Viewing direction is oriented along some axis

Clipping and Projection

- We specify a volume called a viewing frustum
- Map the view frustum to the unit cube
- Clip objects against the view volume, thereby eliminating geometry not visible in the image
- Project objects into two-dimensions
- Transform from eye space to normalized device coordinates

Rasterization and Display

- Transform normalized device coordinates to screen space
- Rasterization converts objects pixels
- Almost every step in the rendering
pipeline involves a change of coordinate
systems!
- Transformations are central to
understanding 3D computer graphics

Lecture: Interaction

Primitive 3D

- How do we specify 3D objects?
- Simple mathematical functions, $z=f(x, y)$
- Parametric functions, (x(u,v), y(u,v), z(u,v)
- Implicit functions, $f(x, y, z)=0$
- Build up from simple primitives
- Point - nothing really to see
- Lines - nearly see through

- Planes - a surface

Simple Planes

- Surfaces modeled as connected planar facets
- $\mathbf{N}(>3)$ vertices, each with 3 coordinates
- Minimally a triangle

Specifying a Face

- Face or facet

Face [v0.x, v0.y, v0.z] [v1.x, v1.y, v1.z] ... [vN.x, vN.y, vN.z]

- Sharing vertices via indirection

Vertex[0] = [v0.x, v0.y, v0.z]
Vertex[1] = [v1.x, v1.y, v1.z]
Vertex[2] = [v2.x, v2.y, v2.z]
:
Vertex[N] = [vN.x, vN.y, vN.z]

Face v0, v1, v2, ... vN

Vertex Specification

- Where
- Geometric coordinates [x, y, z]
- Attributes
- Color values [r, g, b]
- Texture Coordinates [u, v]
- Orientation

- Inside vs. Outside
- Encoded implicitly in ordering
- Geometry nearby
- Often we'd like to 'fake" a more complex shape than our true faceted (piecewise-planar) model
- Required for lighting and shading in OpenGL

Normal Vector

- Often called normal, [n_{x}, n_{y}, n_{z}]

- Normal to a surface is a vector perpendicular to the surface
-Will be used in illumination
- Normalized: $\hat{\mathrm{n}}=\frac{\left[n_{x}, n_{y}, n_{z}\right]}{\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}}}$

Drawing Faces in OpenGL

```
glBegin(GL_POLYGON);
foreach (Vertex v in Face) {
        gIColor4d(v.red, v.green, v.blue, v.alpha);
        glNormal3d(v.norm.x, v.norm.y, v.norm.z);
        gITexCoord2d(v.texture.u, v.texture.v);
        glVertex3d(v.x, v.y, v.z);
}
glEnd();
```

- Heavy-weight model
- Attributes specified for every vertex
- Redundant
- Vertex positions often shared by at least 3 faces
- Vertex attributes are often face attributes (e.g. face normal)

3D File Formats

- MAX - Studio Max
- DXF - AutoCAD
- Supports 2-D and 3-D; binary
- 3DS - 3D studio
- Flexible; binary
- VRML - Virtual reality modeling language
- ASCII - Human readable (and writeable)
- OBJ - Wavefront OBJ format
- ASCII
- Extremely simple
- Widely supported

OBJ File Tokens

- File tokens are listed below
\# some text
Rest of line is a comment
v float float float
A single vertex's geometric position in space
vn float float float
A normal
vt float float
A texture coordinate

OBJ Face Varieties

f int int int ... or
f int/ int int/ int int/ int . . . (vertex \& texture) or
f int/ int/ int int/ int/ int int/ int/ int ... (vertex, texture, \& normal)

- The arguments are 1-based indices into the arrays
- Vertex positions
- Texture coordinates
- Normals, respectively

OBJ Example

- Vertices followed by faces
- Faces reference previous vertices by integer index
- 1-based
\# A simple cube
v 111
v 1 1-1
v 1-1 1
v 1-1-1
v-1 11
v-1 1 -1
v -1 -1 1
v-1-1-1
f 134
f 568
f1 26
f 378
f 157
f 248

Lecture: Rasterization

Primitive Rasterization

- Rasterization converts vertex representation to pixel representation

- Coverage determination
- Computes which pixels (samples) belong to a primitive
- Parameter interpolation
- Computes parameters at covered pixels from parameters associated with primitive vertices,IST

Why Triangles?

- Triangles are simple
- Simple representation for a surface element (3 points or 3 edge equations)
- Triangles are linear (makes computations

$$
\begin{aligned}
& \mathrm{T}=\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
& \mathrm{T}=\left(\mathrm{e}_{0}, \mathrm{e}_{1}, \mathrm{e}_{2}\right)
\end{aligned}
$$

Why Triangles?

- Triangles can approximate any 2-dimensional shape (or 3D surface)
- Polygons are a locally linear (planar) approximation
- I mprove the quality of fit by increasing the number edges or faces

Z-Buffering

- When rendering multiple triangles we need to determine which triangles are visible
- Use z-buffer to resolve visibility
- Stores the depth at each pixel
- I nitialize z-buffer to 1
- Post-perspective \mathbf{z} values lie between 0 and 1
- Linearly interpolate depth ($z_{\text {tri }}$) across triangles
- If $z_{\text {tri }}(x, y)<z B u f f e r[x][y]$
write to pixel at (x, y)
zBuffer[x][y] = $\mathbf{z t r i}_{\text {tr }}(x, y)$

A simple three dimensional scene

Lecture: Illumination

Illumination Models

- Illumination
- Light energy transport from light sources between surfaces via direct and indirect paths
- Shading
- Process of assigning colors to pixels

Illumination Models

- Physically-based
- Models based on the actual physics of light's interactions with matter
- Empirical
- Simple formulations that approximate observed phenomenon

Two Components of Illumination

- Light sources:
- Emittance spectrum (color)
- Geometry (position and direction)
- Directional attenuation
- Surface properties:
- Reflectance spectrum (color)
- Geometry (position, orientation, and microstructure)
- Absorption

Bi-Directional Reflectance Distribution Function (BRDF)

- Describes the transport of irradiance to radiance
$\rho\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)$

Measuring BRDFs

How to use BRDF Data?

Two Components of Illumination

- Simplifications used by most computer graphics systems:
- Compute only direct illumination from the emitters to the reflectors of the scene
- I gnore the geometry of light emitters, and consider only the geometry of reflectors

Ambient Light Source

- A simple hack for indirect illumination
- Incoming ambient illumination ($\mathrm{I}_{\mathrm{i}, \mathrm{a}}$) is constant for all surfaces in the scene
- Reflected ambient illumination ($I_{r, a}$) depends only on the surface's ambient reflection coefficient (k_{a}) and not its position or orientation $\quad I_{r, a}=k_{a} l_{i, a}$
- These quantities typically specified as (R, G, B) triples

Ideal Diffuse Reflection

- I deal diffuse reflectors (e.g., chalk)
- Reflect uniformly over the hemisphere
- Reflection is view-independent
- Very rough at the microscopic level
- Follow Lambert's cosine law

Lambert's Cosine Law

- The reflected energy from a small surface area from illumination arriving from direction \hat{L} is proportional to the cosine of the angle between \hat{L} and the surface normal

$$
\begin{aligned}
\mathrm{I}_{\mathrm{r}} & \approx \mathrm{I}_{\mathrm{i}} \cos \theta \\
& \approx \mathrm{I}_{\mathrm{i}}(\hat{\mathrm{~N}} \cdot \hat{\mathrm{~L}})
\end{aligned}
$$

Specular Reflection

- Specular reflectors have a bright, view dependent highlight
- E.g., polished metal, glossy car finish, a mirror
- At the microscopic level a specular reflecting surface is very smooth
- Specular reflection obeys Snell’s law

Snell's Law

- The relationship between the angles of the incoming and reflected rays with the normal is given by:

$$
\eta \sin \theta_{\mathrm{i}}=\eta_{0} \sin \theta_{0}
$$

- n_{i} and n_{0} are the indices of refraction for the incoming and outgoing ray, respectively
- Reflection is a special case where $\mathbf{n}_{\mathbf{i}}=\mathbf{n}_{\mathbf{o}}$ so θ_{0} $=\theta_{\mathrm{i}}$
- The incoming ray, the surface normal, and the reflected ray all lie in a common plane

Non-Ideal Reflectors

- Snell's law applies only to ideal specular reflectors
- Roughness of surfaces causes highlight to "spread out"
- Empirical models try to simulate the appearance of this effect, without trying to capture the physics of it

Phong Illumination

- One of the most commonly used illumination models in computer graphics
- Empirical model and does not have no physical basis

$$
\begin{aligned}
\mathrm{I}_{\mathrm{r}} & =\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{i}}(\cos \phi)^{\mathrm{n}_{\mathrm{s}}} \\
& =\mathrm{k}_{\mathrm{s}} \mathrm{l}_{\mathrm{i}}(\hat{\mathrm{~V}} \bullet \hat{\mathrm{R}})^{\mathrm{n}_{\mathrm{s}}}
\end{aligned}
$$

- (\hat{V}) is the direction to the viewer
- (V. $\cdot \hat{R})$ is clamped to [0,1]
- The specular exponent \mathbf{n}_{s} controls how quickly the highlight falls off

Examples of Phong

varying light direction

Putting it All Together

$$
I_{r}=\sum_{j=1}^{n u m L i g h t s}\left(\left.K_{a}^{j}\right|_{a} ^{j}+\left.K_{d}^{j}\right|_{d} ^{j} \max \left(\left(\hat{N} \bullet \hat{L}_{j}\right), 0\right)+\left.k_{s}^{j}\right|_{s} ^{j} \max \left((\hat{V} \bullet \hat{R})^{n_{s}}, 0\right)\right)
$$

OpenGL's Illumination Model

$$
I_{r}=\sum_{j=1}^{\text {numLiLghs }}\left(k_{a}^{j} j_{a}^{j}+k_{d}^{j} l_{d}^{j} \max \left(\left(\hat{N} \bullet \hat{L}_{j}\right), 0\right)+k_{s}^{j} \dot{l}_{s}^{j} \max \left((\hat{V} \bullet \hat{R})^{n_{s}}, 0\right)\right)
$$

- Problems with empirical models:
- What are the coefficients for copper?
- What are $k_{\mathrm{a}}, \mathrm{k}_{\mathrm{s}}$, and n_{s} ? Are they measurable quantities?
- Is my picture accurate? Is energy conserved?

Flat Shading

- The simplest shading method
- Applies only one illumination calculation per face
- I llumination usually computed at the centroid of the face:

$$
\text { centroid }=\frac{1}{n} \sum_{i=1}^{n} p_{i}
$$

- Issues:
- For point light sources the light direction varies over the face
- For specular reflections the viewer direction varies over the facet

Gouraud Shading

- Performs the illumination model on vertices and interpolates the intensity of the remaining points on the surface

Notice that facet artifacts are still visible

Phong Shading

- Surface normal is linearly interpolated across polygonal facets, and the illumination model is applied at every point
- Not to be confused with Phong's illumination model

- Phong shading will usually result in a very smooth appearance
- However, evidence of the polygonal model can usually be seen along silhouettes

Local Illumination

- Local illumination models compute the colors of points on surfaces by considering only local properties:
- Position of the point
- Surface properties
- Properties of any light affect it
- No other objects in the scene are considered neither as light blockers nor as reflectors
- Typical of immediate-mode renders, such as OpenGL

KAIST

Global Illumination

- In the real world, light takes indirect paths
- Light reflects off of other materials (possibly multiple objects)
- Light is blocked by other objects
- Light can be scattered
- Light can be focused
- Light can bend
- Harder to model
- At each point we must consider not only every light source, but and other point that might have reflected light toward it

Lecture: Texture Mapping

Texture Mapping

- Requires lots of geometry to fully represent complex shapes of models
- Add details with image representations

The Quest for Visual Realism

Photo-Textures

During rasterization interpolate the coordinate indices into the texture map

Texture Maps in OpenGL

- Specify normalized texture coordinates at each of the vertices (\mathbf{u}, v)
- Texel indices
(s, t) = (u, v) • (width, height)

```
glBindTexture(GL_TEXTURE_2D, texID)
glBegin(GL_POLYGON)
    glTexCoord2d(0,1); glVertex2d(-1,-1);
    glTexCoord2d(1,1); glVertex2d( 1,-1);
    glTexCoord2d(1,0); glVertex2d( 1, 1);
    glTexCoord2d(0,0); glVertex2d(-1, 1);
glEnd()
```


Shadow Maps

Eye
Use the depth map in the light view to determine if sample point is visible

Environment Maps

- Simulate complex mirror-like objects
- Use textures to capture environment of objects
- Use surface normal to compute texture coordinates

Environment Maps - Example

T1000 in Terminator 2 from Industrial Light and Magic

Cube Maps

- Maps a viewing direction b and returns an RGB color
- Use stored texture maps

Lecture: Ray Tracing

Ray Casting

- For each pixel, find closest object along the ray and shade pixel accordingly
- Advantages
- Conceptually simple
- Can support CSG
- Can take advantage of spatial coherence in scene
- Can be extended to handle global illumination effects (ex: shadows and reflectance)
- Disadvantages
- Renderer must have access to entire retained model
- Hard to map to special-purpose hardware
- Visibility computation is a function of resolution

Recursive Ray Casting

- Ray casting generally dismissed early on:
- Takes no advantage of screen space coherence
- Requires costly visibility computation
- Only works for solids
- Forces per pixel illumination evaluations
- Gained popularity in when Turner Whitted (1980) recognized that recursive ray casting could be used for global illumination effects

Overall Algorithm of Ray Tracing

- Per each pixel, compute a ray, \mathbf{R}
function RayTracing (R)
- Compute an intersection against objects
- If no hit,
- Return the background color
- Otherwise,
- Compute shading, c
- General secondary ray, R'
- Perform c' = RayTracing (R')
- Return c+c'

Ray Representation

- We need to compute the first surface hit along a ray
- Represent ray with origin and direction
- Compute intersections of objects with ray
- Return closest object

Generating Primary Rays

Intersection Tests

Go through all of the objects in the scene to determine the one closest to the origin of

Strategy: Solve of the intersection of the Ray with a mathematical description of the object

Simple Strategy

- Parametric ray equation
- Gives all points along the ray as a function of the parameter

$$
\dot{p}(t)=\dot{o}+t \vec{d}
$$

- I mplicit surface equation
- Describes all points on the surface as the zero set of a function

$$
f(p)=0
$$

- Substitute ray equation into surface function and solve for t

$$
f(0+t \vec{d})=0
$$

Ray-Plane Intersection

- I mplicit equation of a plane:

$$
n \cdot p-d=0
$$

- Substitute ray equation:

$$
n \cdot(0+t \vec{d})-d=0
$$

- Solve for t :

$$
\begin{gathered}
t(n \cdot \vec{d})=d-n \cdot o \\
t=\frac{d-n \cdot o}{n \cdot \vec{d}}
\end{gathered}
$$

Generalizing to Triangles

- Find of the point of intersection on the plane containing the triangle
- Determine if the point is inside the triangle
- Barycentric coordinate method
- Many other methods

Barycentric Coordinates

- Points in a triangle have positive barycentric coordinates:
$\dot{p}=\alpha \dot{v}_{0}+\beta \dot{v}_{1}+\dot{\psi}_{2}$,where $\alpha+\beta+\gamma=1$

Barycentric Coordinates

- Points in a triangle have positive barycentric coordinates:

$$
\dot{p}=\alpha \dot{v}_{0}+\beta \dot{v}_{1}+\dot{\psi}_{2} \text {,where } \alpha+\beta+\gamma=1
$$

- Benefits:
- Barycentric coordinates can be used for interpolating vertex parameters (e.g., normals, colors, texture coordinates, etc)

Ray-Triangle Intersection

- A point in a ray intersects with a triangle

$$
\dot{p}(t)=\dot{v}_{0}+\beta\left(\dot{v}_{1}-\dot{v}_{0}\right)+\gamma\left(\dot{v}_{2}-\dot{v}_{0}\right)
$$

- Three unknowns, but three equations
- Compute the point based on t
- Then, check whether the point is on the triangle
- Refer to Sec. 9.3.2 in the textbook for the detail equations

