Configuration Space II

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Configuration Space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Obstacles in the Configuration Space

- A configuration q is collision-free, or free, if a moving object placed at q does not intersect any obstacles in the workspace
- The free space F is the set of free configurations
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles

Disc in 2-D Workspace

Polygonal Robot Translating in 2-D Workspace

Polygonal Robot Translating & Rotating in 2-D Workspace

Polygonal Robot Translating & Rotating in 2-D Workspace

Articulated Robot in 2-D Workspace

C-Obstacle Construction

- Input:
 - Polygonal moving object translating in 2-D workspace
 - Polygonal obstacles
- Output: configuration space obstacles represented as polygons

Minkowski Sum

- The Minkowski sum of two sets *P* and *Q*, denoted by $P \oplus Q$, is defined as $P \oplus Q = \{p+q \mid p \in P, q \in Q\}$
- Similarly, the Minkowski difference is defined as

$$P \ominus Q = \{ p - q \mid p \in P, q \in Q \}$$
$$= P \oplus -Q$$

Minkowski Sum of Convex polygons

- - The vertices of P
 Q are the "sums" of vertices of P and Q.

Observation

• If *P* is an obstacle in the workspace and *M* is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$.

Computing C-obstacles

Computational efficiency

- Running time O(n+m)
- Space O(n+m)
- Non-convex obstacles
 - Decompose into convex polygons (*e.g.*, triangles or trapezoids), compute the Minkowski sums, and take the union
 - Complexity of Minkowksi sum $O(n^2m^2)$
- 3-D workspace

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Paths in the configuration space

• A path in C is a continuous curve connecting two configurations q and q':

 $\tau: s \in [0,1] \to \tau(s) \in C$

such that $\tau(0) = q$ and $\tau(1) = q'$.

Constraints on paths

• A trajectory is a path parameterized by time:

 $\tau: t \in [0,T] \to \tau(t) \in C$

Constraints

- Finite length
- Bounded curvature
- Smoothness
- Minimum length
- Minimum time
- Minimum energy

• ...

Free Space Topology

- A free path lies entirely in the free space *F*.
- The moving object and the obstacles are modeled as closed subsets, meaning that they contain their boundaries.
- One can show that the C-obstacles are closed subsets of the configuration space C as well.
- Consequently, the free space F is an open subset of C.

Semi-Free Space

- A configuration q is semi-free if the moving object placed q touches the boundary, but not the interior of obstacles.
 - Free, or
 - In contact
- The semi-free space is a closed subset of C.

Example

 \bigcirc

Homotopic Paths

 Two paths τ and τ' (that map from U to V) with the same endpoints are homotopic if one can be continuously deformed into the other:

 $h\!:\!U\!\times\![0,\!1]\!\rightarrow\!V$

with
$$h(s,0) = \tau(s)$$
 and $h(s,1) = \tau'(s)$.

 A homotopic class of paths contains all paths that are homotopic to one another.

Connectedness of C-Space

- C is connected if every two configurations can be connected by a path.
- C is simply-connected if any two paths connecting the same endpoints are homotopic.
 Examples: R² or R³
- Otherwise C is multiply-connected.

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Metric in Configuration Space

• A metric or distance function d in a configuration space C is a function

 $d:(q,q') \in C^2 \rightarrow d(q,q') \ge 0$ such that

- d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q,q') \le d(q,q'') + d(q'',q')$.

Example

- Robot A and a point x on A
- x(q): position of x in the workspace when A is at configuration q
- A distance d in C is defined by $d(q, q') = \max_{x \in A} ||x(q) - x(q')||$

, where ||x - y|| denotes the Euclidean distance between points *x* and *y* in the workspace.

Examples in R² x S¹

• Consider R² x S¹

- $q = (x, y, \theta), q' = (x', y', \theta')$ with $\theta, \theta' \in [0, 2\pi)$
- $\alpha = \min \{ | \theta \theta' | , 2\pi | \theta \theta' | \}$

• $d(q, q') = \operatorname{sqrt}((x-x')^2 + (y-y')^2 + \alpha^2))$

θ

 $\bar{\alpha}$

A

Class Objectives were:

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Next Time....

Collision detection and distance computation

