Configuration Space I

Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

What is a Path?

Rough Idea

- Convert rigid robots, articulated robots, etc. into points
- Apply algorithms for moving points

Mapping from the Workspace to the Configuration Space

Configuration Space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Configuration Space (C-space)

- The configuration of an object is a complete specification of the position of every point on the object
- Usually a configuration is expressed as a vector of position \& orientation parameters: $\boldsymbol{q}=\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots, q_{n}\right)$
- The configuration space C is the set of all possible configurations
- A configuration is a point in C

Examples of Configuration Spaces

Examples of Configuration Spaces

Workspace
This is not a valid C-space!

Examples of Configuration Spaces

The topology of C is usually not that of a Cartesian space R^{n}.

$S^{1} \times S^{1}=\mathbf{T}^{\mathbf{2}}$
KAIST

Examples of Circular Robot

Dimension of Configuration Space

- The dimension of the configuration space is the minimum number of parameters needed to specify the configuration of the object completely
- It is also called the number of degrees of freedom (dofs) of a moving object

Example: Rigid Robot in 2-D Workspace

- 3-parameter specification: $q=(x, y, \theta)$ with $\theta \in[0,2 \pi)$.
- 3-D configuration space

Example: Rigid Robot in 2-D workspace

- 4-parameter specification: $q=(x, y, u, v)$ with $u^{2}+v^{2}=1$. Note $u=\cos \theta$ and $v=\sin \theta$
- dim of configuration space $=3$
- Does the dimension of the configuration space (number of dofs) depend on the parametrization?

Holonomic and Non-Holonomic Contraints

- Holonomic constraints
- $\mathbf{g}(\mathbf{q}, \mathbf{t})=\mathbf{0}$
- Non-holonomic constraints
- $\mathbf{g}\left(\mathbf{q}, \mathbf{q}^{\prime}, \mathbf{t}\right)=\mathbf{0}$

Computation of Dimension of CSpace

- Suppose that we have a rigid body that can translate and rotate in 2D workspace
- Start with three points: A, B, C (6D space)
- We have the following (holonomic) constraints
- Given A, we know the dist to B: $d(A, B)=|A-B|$
- Given A and B, we have similar equations: $d(A, C)=|A-C|, d(B, C)=|B-C|$
- Each holonomic constraint reduces one dim.
- Not for non-holonomic constraint

Example: Rigid Robot in 3-D Workspace

- We can represent the positions and orientations of such robots with matrices (i.e., SO (3) and SE (3))

SO (n) and SE (n)

- Special orthogonal group, SO(n), of $\mathbf{n} \times \mathbf{n}$ matrices R,

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right)
$$

that satisfy:

$$
\begin{aligned}
& r_{1 i}^{2}+r_{2 \mathrm{i}}^{2}+r_{3 \mathrm{i}}^{2}=1 \text { for all } i, \\
& r_{1 i} r_{1 j}+r_{2 \mathrm{i}} r_{2 \mathrm{j}}+r_{3 i} r_{3 \mathrm{j}}=0 \text { for all } i \neq j, \\
& \operatorname{det}(R)=+\mathbf{1}
\end{aligned}
$$

Refer to the 3D Transformation at the undergraduate computer graphics.

- Given the orientation matrix R of SO (n) and the position vector p, special Euclidean group, SE (n), is defined as:

$$
\left[\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right]
$$

Example: Rigid Robot in 3-D Workspace

- $q=($ position, orientation $)=(x, y, z$, ??? $)$
- Parametrization of orientations by matrix: $q=\left(r_{11}, r_{12}, \ldots, r_{33}, r_{33}\right)$ where $r_{11}, r_{12}, \ldots, r_{33}$ are the elements of rotation matrix

$$
R=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right) \in S O(3)
$$

Example: Rigid Robot in 3-D Workspace

- Parametrization of orientations by Euler angles: (ϕ, θ, ψ)

Example: Rigid Robot in 3-D Workspace

- Parametrization of orientations

- Compare with representation of orientation in 2-D:
$\left(u_{1}, u_{2}\right)=(\cos \theta, \sin \theta)$

Example: Rigid Robot in 3-D Workspace

- Advantage of unit quaternion representation
- Compact
- No singularity
- Naturally reflect the topology of the space of orientations
- Number of dofs $=\mathbf{6}$
- Topology: $\mathbf{R}^{\mathbf{3}} \mathbf{x}$ SO(3)

Example: Articulated Robot

- $q=\left(q_{1}, q_{2}, \ldots, q_{2 n}\right)$
- Number of dofs = 2n
- What is the topology?

An articulated object is a set of rigid bodies connected at the joints.

Class Objectives were:

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

Additional Homework

- For the first class in every week:
- Find two papers at ICRA/ IROS
- Go over abstracts and browse papers
- Submit a short summary (just a few paragraphs) of these two papers

Next Time....

- Configuration space
- Definitions and examples
- Obstacles
- Paths
- Metrics

