Configuration Space I

Sung-Eui Yoon (윤성의)

Course URL: http://sglab.kaist.ac.kr/~sungeui/MPA

Class Objectives

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

What is a Path?

Rough Idea

- Convert rigid robots, articulated robots, etc. into points
- Apply algorithms for moving points

Mapping from the Workspace to the Configuration Space

Configuration Space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Configuration Space (C-space)

- The configuration of an object is a complete specification of the position of every point on the object
 - Usually a configuration is expressed as a vector of position & orientation parameters: $q = (q_1, q_2, ..., q_n)$
- The configuration space C is $q_1^{q_1}$, q_2, \dots, q_n the set of all possible configurations
 - A configuration is a point in C

 q_2

 q_3

 $q_{\rm n}$

 $q=(q_1, q_2,$

Examples of Configuration Spaces

Examples of Configuration Spaces

This is not a valid C-space!

Examples of Configuration Spaces

The topology of *C* is usually **not** that of a Cartesian space R^n .

 $S^1 \times S^1 = T^2$

Examples of Circular Robot

Dimension of Configuration Space

- The dimension of the configuration space is the minimum number of parameters needed to specify the configuration of the object completely
- It is also called the number of degrees of freedom (dofs) of a moving object

• 3-parameter specification: $q = (x, y, \theta)$ with $\theta \in [0, 2\pi)$.

• 3-D configuration space

- 4-parameter specification: q = (x, y, u, v) with $u^2+v^2 = 1$. Note $u = \cos\theta$ and $v = \sin\theta$
- dim of configuration space = 3
 - Does the dimension of the configuration space (number of dofs) depend on the parametrization?

Holonomic and Non-Holonomic Contraints

Holonomic constraints

• g (q, t) = 0

Non-holonomic constraints

• g(q, q', t) = 0

Computation of Dimension of C-Space

- Suppose that we have a rigid body that can translate and rotate in 2D workspace
 - Start with three points: A, B, C (6D space)
- We have the following (holonomic) constraints
 - Given A, we know the dist to B: d(A,B) = |A-B|
 - Given A and B, we have similar equations:
 d(A,C) = |A-C|, d(B,C) = |B-C|
- Each holonomic constraint reduces one dim.
 - Not for non-holonomic constraint

 We can represent the positions and orientations of such robots with matrices (i.e., SO (3) and SE (3))

SO (n) and SE (n)

 Special orthogonal group, SO(n), of n x n matrices R,

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
 that satisfy:
$$r_{1i}^{2} + r_{2i}^{2} + r_{3i}^{2} = 1 \text{ for all } i,$$
$$r_{1i}r_{1j} + r_{2i}r_{2j} + r_{3i}r_{3j} = 0 \text{ for all } i \neq j,$$
$$\det(R) = +1$$

Refer to the 3D Transformation at the undergraduate computer graphics.

 Given the orientation matrix R of SO (n) and the position vector p, special Euclidean group, SE (n), is defined as:

$$\begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

- q = (position, orientation) = (x, y, z, ???)
- Parametrization of orientations by matrix: $q = (r_{11}, r_{12}, ..., r_{33}, r_{33})$ where $r_{11}, r_{12}, ..., r_{33}$ are the elements of rotation matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \in SO(3)$$

• Parametrization of orientations by Euler angles: (ϕ, θ, ψ)

- Parametrization of orientations by unit quaternion: $u = (u_1, u_2, u_3, u_4)$ with $u_1^2 + u_2^2 + u_3^2 + u_4^2 = 1$.
 - Note $(u_1, u_2, u_3, u_4) =$ $(\cos\theta/2, n_x \sin\theta/2, n_y \sin\theta/2, n_z \sin\theta/2)$ with $n_x^2 + n_y^2 + n_z^2 = 1$
 - Compare with representation of orientation in 2-D: (u₁,u₂) = (cosθ, sinθ)

- Advantage of unit quaternion representation
 - Compact
 - No singularity
 - Naturally reflect the topology of the space of orientations
- Number of dofs = 6
- Topology: $R^3 \times SO(3)$

Example: Articulated Robot

- $q = (q_1, q_2, ..., q_{2n})$
- Number of dofs = 2n
- What is the topology?

An articulated object is a set of rigid bodies connected at the joints.

Class Objectives were:

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Additional Homework

• For the first class in every week:

- Find two papers at ICRA/IROS
- Go over abstracts and browse papers
- Submit a short summary (just a few paragraphs) of these two papers

Next Time....

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

