# Team II Paper Presentation II

## MultiDiff: Consistent Novel View Synthesis from a

#### Single Image (CVPR 2024)

Asiman Ziyaddinov, Jinhyuk Jang, Prin Phunyaphibarn

#### Previous talk: Team 3 LGM: Large Multi-View Gaussian Model for High -Resolution 3D Content Creation



| Multi-view Generation | Creates images of multiple views          |  |  |  |  |  |
|-----------------------|-------------------------------------------|--|--|--|--|--|
| Gaussian Generation   | Create Gaussian from multiple view pixels |  |  |  |  |  |
| Mesh Extraction       | Convert 3D Gaussian into polygons         |  |  |  |  |  |

#### MultiDiff: Consistent Novel View Synthesis from a Single Image



**Reference image** 

**Generated sequence** 

## The Problem: Novel View Synthesis

- What is novel view synthesis?
- Why is synthesizing consistent views from a single image challenging?
- Key challenges: Depth ambiguity, coherence across views, and limited input.

## MultiDiff: The Proposed Approach

- Uses diffusion models to achieve consistent view synthesis.
- Training using **structured noise** to ensure coherence.
- Key advantages: Single-image input, consistent across viewpoints, and editable.



# How Diffusion Models Enable View Synthesis

- 1. **Pretrained** Diffusion Model (Image Prior)
- 2. Video Diffusion Model (Temporal Prior)
- 3. Geometric (depth) priors maintain depth and perspective.
- 4. Structured noise is used to generate consistent views.

#### Fine-tuning Video Diffusion Models



Fine-tuning keeps strong video and image priors from the pretrained diffusion model

#### Fine-tuning Video Diffusion Models



The ControlNet-like Adapter adds *images* warped based on depth prediction for stronger geometric guidance

## Key Observation: Correlated Noise

Noise should be correlated across frames (warped based on depth map) to depict the 3D correspondences in the 3D scene



## Diffusion Model Training



#### Train diffusion models by predicting structured noise

Song, Yang, et al. "Consistency Models." *International Conference on Machine Learning*. PMLR, 2023. <u>https://lilianweng.github.io/posts/2021-07-11-diffusion-models/</u>

## **Structured Noise**

#### Noise warped based on predicted depth







Structured noise

**Reference image** 

Depth-based reference warp

#### Importance of structured noise

Reference image

Sampled views



Without structured noise ("MultiDiff w/o SN"), the color of the dining table is not maintained w.r.t. the reference image.

## Why MultiDiff is Unique

- Generates coherent outputs from a single input image.
- Consistent view generation across trajectories.
- Editable outputs enable further applications like object manipulation.

#### **Consistent editing**





**Generated sequence** 

#### Experiments

•Datasets used: RealEstate10K (Youtube) & ScanNet (1513 handheld captures).

•Metrics evaluated: Fidelity, coherence, and perceptual quality.

#### Quantitative results

|       | Method                  | Short-term |         |       |       | Long-term |        |       |         |
|-------|-------------------------|------------|---------|-------|-------|-----------|--------|-------|---------|
|       |                         | PSNR ↑     | LPIPS ↓ | FID ↓ | KID ↓ | FID ↓     | KID ↓  | FVD↓  | mTSED ↑ |
| 128px | MVDiffusion [68]        | 13.14      | 0.439   | 43.28 | 0.013 | 43.58     | 0.013  | 186.6 | 0.506   |
|       | DFM [69]                | 16.59      | 0.444   | 75.19 | 0.036 | 111.9     | 0.069  | 167.2 | 0.912   |
|       | Text2Room [27]          | 15.01      | 0.452   | 39.87 | 0.008 | 82.44     | 0.0041 | 173.1 | 0.812   |
|       | PhotoNVS [82]           | 15.23      | 0.440   | 49.19 | 0.019 | 75.23     | 0.038  | 89.04 | 0.479   |
|       | MultiDiff (Ours) w/o SN | 15.29      | 0.372   | 40.36 | 0.008 | 43.61     | 0.011  | 80.71 | 0.752   |
|       | MultiDiff (Ours)        | 15.50      | 0.356   | 38.44 | 0.007 | 42.41     | 0.010  | 74.10 | 0.776   |
| 256px | MVDiffusion [68]        | 12.88      | 0.502   | 50.18 | 0.017 | 51.60     | 0.018  | 230.1 | 0.361   |
|       | Text2Room [27]          | 14.32      | 0.514   | 46.69 | 0.014 | 93.09     | 0.058  | 201.1 | 0.631   |
|       | PhotoNVS [82]           | 14.61      | 0.542   | 63.21 | 0.033 | 96.85     | 0.059  | 134.2 | 0.263   |
|       | MultiDiff (Ours) w/o SN | 14.80      | 0.445   | 47.10 | 0.013 | 50.84     | 0.016  | 119.3 | 0.529   |
|       | MultiDiff (Ours)        | 15.00      | 0.431   | 43.84 | 0.010 | 47.11     | 0.013  | 114.9 | 0.576   |

#### **Qualitative evaluations**



## Qualitative evaluations

#### Comparison on RealEstate10K test trajectories



**Reference image** 



PhotoNVS





0 3

## Conclusion

- Achievements: Coherent novel views from a single image, real-world applications.
- Limitations: Computationally intensive, dataset-dependent.
- Future Work: Faster inference, broader generalization.