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Mesh Extraction Convert 3D Gaussian into polygons



MultiDiff: Consistent Novel View Synthesis from a Single Image
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https://docs.google.com/file/d/1C4fnX1bkX8aBygrjpkAUpstttPtW_Q_t/preview

The Problem: Novel View Synthesis

* What is novel view synthesis?

* Why is synthesizing consistent views from a single image
challenging?

» Key challenges: Depth ambiguity, coherence across views, and

limited input.



MultiDiff: The Proposed Approach

» Uses diffusion models to achieve consistent view synthesis.

* Training using structured noise to ensure coherence.

» Key advantages: Single-image input, consistent across viewpoints, and
editable.
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How Diffusion Models Enable View
Synthesis

Pretrained Diffusion Model (Image Prior)
Video Diffusion Model (Temporal Prior)

Geometric (depth) priors maintain depth and perspective.
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Structured noise is used to generate consistent views.



Fine-tuning Video Diffusion Models
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Fine-tuning keeps strong video and image priors from the
pretrained diffusion model



Fine-tuning Video Diffusion Models
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ControlNet-like
Adapter

The ControlNet-like Adapter adds images warped based on depth prediction for

stronger geometric guidance
8



Key Observation: Correlated Noise

Noise should be correlated across frames (warped based on
depth map) to depict the 3D correspondences in the 3D scene

Chang, Pascal, et al. "How | Warped Your Noise: a Temporally-Correlated Noise Prior for Diffusion Models." The Twelfth International Conference on Learning
Representations. 2024.


https://docs.google.com/file/d/19EdZMI7zvmsEIldDpCVI8aAzaTyt1odR/preview

Diffusion Model Training
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Train diffusion models by predicting structured noise

Song, Yang, et al. "Consistency Models." International Conference on Machine Learning. PMLR, 2023.
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Structured Noise
Noise warped based on predicted depth
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https://docs.google.com/file/d/1A-JuDqlJ31FyQ1G955dlgBu4lt2DhDpD/preview

Importance of structured noise

Sampled views

Reference image

MultiDiff

MultiDiff w/o SN

Without structured noise ("MultiDiff w/o SN”’), the color of the dining table is not maintained
w.r.t. the reference image.
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Why MultiDiff is Unique

Consistent editing

» Generates coherent outputs from a

single input image.

« Consistent view generation across

trajectories.

 Editable outputs enable further

applications like object manipulation.

Reference image

Generated sequence
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https://docs.google.com/file/d/1Z11kC3bSuGlBTJZ2crWN5ftoI3I3od1e/preview

Experiments

*Datasets used: RealEstate10K (Youtube) & ScanNet (1513 handheld captures).

*Metrics evaluated: Fidelity, coherence, and perceptual quality.

14



Quantitative results

Method Short-term Long-term

PSNRt LPIPS| FID| KID] ([FID| KID] FVD| mTSED*
MVDiffusion [68] 13.14 0439 4328 0.013 [ 4358 0013 186.6 0.506
< DFM [69] 16.59 0444 7519 0036 | 1119 0.069 167.2 0.912
§ Text2Room [27] 15.01 0452  39.87 0.008 | 8244 0.0041 173.1 0.812
— PhotoNVS [82] 15.23 0.440 49.19 0.019 | 75.23 0.038  89.04 0.479
MultiDiff (Ours) w/o SN 15.29 0.372 4036 0.008 | 43.61 0.011 80.71 0.752
MultiDiff (Ours) 15.50 0356 3844 0.007 | 4241 0.010 74.10 0.776
MVDiffusion [68] 12.88 0502 50.18 0.017 | 51.60 0.018  230.1 0.361
é.. Text2Room [27] 14.32 0.514 4669 0.014 | 93.09 0.058 201.1 0.631
\ PhotoNVS [82] 14.61 0542 6321 0.033 | 96.85 0.059 1342 0.263
MultiDiff (Ours) w/o SN | 14.80 0445 47.10 0.013 | 50.84 0.016 1193 0.529
MultiDiff (Ours) 15.00 0431 4384 0.010 | 47.11 0.013 1149 0.576
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Qualitative evaluations

Time

Sampled views

Reference image

WOOY7IXA L,

N/ | 04
SANOIOUJ

16



Qualitative evaluations

Comparison on RealEstate10K test trajectories
GT / Ours ,‘(

Reference image
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https://docs.google.com/file/d/1HjZJKyJ6u_0xLRBIiW-JFcOuGOfjclQa/preview

Conclusion

 Achievements: Coherent novel views from a single image, real-world applications.
e Limitations: Computationally intensive, dataset-dependent.

* Future Work: Faster inference, broader generalization.
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